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Abstract: This paper considers the flatness-based tracking control design for a pneumatic
system, where a tank and a proportional valve are connected via a long transmission line of
approximately 20 m. Motivated by this test bench set-up and the aim to implement fast pressure
changes in the tank, three distributed-parameter models of different complexity and physical
accuracy are presented, involving linear and quasi-linear hyperbolic partial differential equations.
A flatness-based state feedback control is derived based on a linear distributed-parameter model
of the pneumatic system. In combination with flatness-based feedforward controllers, designed
for two of the three models, tracking controllers are obtained. Based on a simulation model of
the test bench, verified to match the measurement data almost perfectly, the controllers are
shown to execute fast pressure changes in the tank very accurately.
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1. INTRODUCTION

Pneumatic systems are widely spread in industrial appli-
cations. One important class arises, for example, wher-
ever compressed air is supplied from a source to a target
process via a transmission line. Unfortunately, pneumatic
systems are commonly known to have a relatively low
energy efficiency (see Radgen (2001)), a problem that can
be tackled by means of sophisticated controllers. In Rager
et al. (2016), a pole placement approach is used to stabilize
a lumped-parameter model of a transmission line, given in
terms of linear ordinary differential equations (ODEs). A
similar mathematical model serves as basis for the model
predictive controller designed in Alaya and Fiedler (2016).
Though further control approaches for pneumatic systems
with long transmission lines can be found, collectively,
they neglect or approximate the distributed character of
the transmission line by discretizing its spatial coordinate.
However, as soon as lines of significant length are involved,
the finite speed of propagation therein should be taken
into account. Rather than using linear ODE models of
high order, the infinite-dimensional character is more ac-
curately described by partial differential equations (PDEs)
of hyperbolic type.

The set-up of the test bench to be controlled in this paper
involves a transmission line of almost 20 m feeding a
tank. Pressure changes in the tank of several bar are to
be stabilized within less than 0.5 s. The same set-up is
considered in Kern and Gehring (2017), where a stabilizing
state feedback is designed using the backstepping approach
in Deutscher et al. (2017) for bi-directionally coupled

PDE-ODE systems. Likewise, the tracking controllers de-
signed in this paper are based on the five distributed-
parameter models derived for the pneumatic test bench
in Kern (2017), three of which are essential here: a so-
called plant model, a quasilinear model and a linear model.
These models of decreasing complexity are well suited to
represent the infinite-dimensional character of the trans-
mission line and the nonlinearities occurring. This paper
employs models of appropriate complexity and different
control approaches. A state feedback is designed for the
linear model by application of the flatness-based approach
presented in Woittennek (2013). As a mere stabilization
fails to achieve the control aim specified before, model-
based feedforward controllers are derived for the linear and
the quasilinear model following the flatness-based design in
Kniippel and Woittennek (2015). In combination with the
state feedback, the tracking controller using the quasilinear
feedforward is shown to meet the control objective without
exceeding the physical input limitations at the test bench.

In the next section, mathematical models of the pneumatic
test bench are derived. Based on that, a flatness-based
state feedback is designed for the linear model in Section 3.
In combination with two flatness-based feedforward con-
trollers given in Section 4, the performance of the resulting
tracking controllers is discussed in Section 5.

2. MODELS OF THE TEST BENCH
The test bench shown in Fig. 1 basically consists of a

proportional 5/3-directional pneumatic valve (used only
in a 3/3-configuration, as illustrated in Fig. 2) that is
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Fig. 2. Sketch of the pneumatic test bench.

connected to a tank via a tube. Compressed air of 9 bar is
supplied to the valve. All essential parameters character-
izing the test bench are summarized in Table 1 (see Kern
(2017) and references therein for more details).

Due to the small inner diameter D of the tube as compared
to its length L, the flow in the transmission line is
considered as one-dimensional. Introducing a scaled spatial
variable z € [0,1], as sketched in Fig. 2, and denoting the
time by ¢, the air flowing through the tube is described by
the density p(z,t), the pressure p(z,t), the temperature
T(z,t), the velocity v(z,t) in the axial direction of the
tube and the total energy (pe)(z,t). The tank of constant
volume Vi, is modeled as a lumped-parameter system
with its quantities denoted by (+)yor(t).

A detailed physical derivation of the equations modeling
the pneumatic test bench, including all assumptions in-
volved, can be found in Kern (2017). For comprehensibil-
ity, the essential relations are restated in the following.

2.1 Quasilinear third-order model (plant model)

In Kern (2017), the Euler equations for one-dimensional
flow are augmented by taking effects of friction and heat
transfer into account. The mathematical model thusly
obtained is a set of three quasilinear PDEs:

1
op — Zﬁz(Pv) =0 (1a)
1 v|v
8t(p1}) — Eaz(pUQ +p) = _fCompp27“D| (1b)
1 D v?|v
(o) — -0-(0(pe + 1) = 072 (T~ T) — feomp P2 "]

where A = 7D?/4 is the cross-section area of the tube,
and 9y and 0, denote partial derivatives w.r.t. to ¢ and
z. In (1c), the first term on the right-hand side models
thermal losses due to the tube being not ideally insulated.

1 Note that the dimensions of some components in the photo do not
match the test bench parameters in Table 1, relevant in this paper.

Table 1. Test bench parameters.

D inner tube diameter 8-1073 m

L length of the tube 19.83 m

0 ambient air density 1.21 kg/m?

Po ambient air pressure 1.01 bar

To ambient air temperature 293.15 K

R specific gas constant of air 287.05 J/kgK
5 height of roughness elements 1.5-10~6 m
¥ ratio of specific heats 1.4

Viol  tank volume 6.46 - 10~4 m?3
R,o1 thermal resistance 4-1073 K/w

As the heat capacity of the tube is much greater than
the one of the air in the tube, the wall temperature can
be considered to be constant and equal to the (constant)
ambient air temperature Ty. By the terms proportional to
feomp, friction losses due to the viscosity of the air in the
tube are accounted for. Both the heat transfer coefficient
o and the friction factor fecomp depend on p, v and e and
can be calculated by suitable correlations (Munson (2013);
Idel’chik and Steinberg (1996)). As the air in the tube is
assumed to be a polytropic, ideal gas, the pressure p, the
density p and the temperature T are related in terms of
the ideal gas law

p = pRT, (2)
with the specific gas constant Rs. Moreover, e, v, p and p
satisfy

e— 2yl 1 3)

2 py—1

where 7 is the ratio of specific heats.

A proportional valve fed by a compressed air supply is
attached to the tube at z = 1. As the aperture of the
valve can be controlled, it is assumed that the (scaled)
mass flow m(1,t) = A(pv)(1,t) serves as the control input,
giving rise to the boundary conditions (BCs)

p(1,t) = pin(t),  (pv)(1,1) = U(t) (4)
at the inlet. The input U is specified by the valve’s
aperture. The density p;, depends on the characteristics
of the valve, the compressed air supply and the mass flow.
As the connection between the air supply and the valve is
a long transmission line in itself, no mathematical model
of piy is available at the moment.

Using the laws of conservation for the tank, terminating
the tube at z = 0, the third and final BC of (1) reads

%mvol(t) = A(pv)(0,t) (5a)
cv7VO1% (MmyorTvo1) (t) = A(pve)(0,t) + A(pv)(0,t)
+ (TO — Tvol(t)). (5b)

vol
Therein, ¢, vo1 is the specific heat capacity of air at a con-
stant volume and R, is the constant thermal resistance
of the tank jacket.

2.2 Simplified models

If the thermal equilibrium of the air with its surroundings
is reached almost instantaneously, the flow in the tube
can be considered as isothermal, i.e. T(z,t) = Ty (cf.
Osiadacz and Chaczykowski (2001)). Subsequently, the
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