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Abstract: We develop concise primal-dual dynamics for a class of Quadratically Constrained
Quadratic Programming problems in power system optimization. Using a constrained La-
grangian reformulation of the problem and the classical stability result of Lyapunov, we establish
the asymptotic convergence of the primal-dual dynamics. We demonstrate the efficiency of the
proposed method on an economic power dispatch problem with transmission losses and we
suggest a neural network architecture for real-time optimization.
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1. INTRODUCTION

Quadratically constrained quadratic programming (QCQP)
is widely applied in engineering. Recent applications in-
clude among others relay coordination of power system
(Papaspiliotopoulos et al., 2017), power flow optimization
(Bose et al., 2015) and economic dispatch (Zhong et al.,
2013). In general, the QCQP problem is nonconvex and
NP-hard. However, in certain instances, it is possible to
exploit the physical structure of the problem to develop
efficient and polynomial-time algorithms (Bose et al., 2015;
Konar and Sidiropoulos, 2015). In these cases, iterative
solution methods such as interior point method (Torres
and Quintana, 1998), Hopfield neural networks (Su and
Lin, 2000) and alternating direction method of multipliers
Huang and Sidiropoulos (2016) have been employed.

Recently, there has been a surge in continuous-time
gradient-based methods for fast computation and real-
time implementation of nonlinear programming prob-
lems(Arrow et al., 1958; Feijer and Paganini, 2010;
Cherukuri et al., 2016). Such gradient dynamics have been
applied in active loss minization Ma and Elia (2013), in
congestion control applications Feijer and Paganini (2010)
and in load sharing Yi et al. (2015). Circuit implementa-
tion have also been considered in Costantini et al. (2008)
Levenson and Adegbege (2016). This class of methods
offers light-weight and efficient algorithms that can be
implemented in real-time with little or no storage require-
ments.

Motivated by these previous results, we develop in this
paper concise primal-dual gradient dynamics for a class
of convex QCQP problems. The proposed method extends
the results of Costantini et al. (2008) to cases where the
constraints are not affine in the variable and where the
nonlinearity describing the bound constraints is not nec-
essarily passive. Using a bound-Lagrangian reformulation

of the problem, we develop a compact gradient-based algo-
rithm to seek the saddle-point of the Lagrangian function
which in turn solves the original QCQP. The efficiency of
the proposed algorithm is tested on an economic dispatch
problem incorporating transmission losses.

Economic dispatch is an important energy management
problem which deals with power mismatch, fuel cost econ-
omy, and transmission losses reduction. The traditional
economic dispatch problem can be formulated as a QCQP
problem. We derive sufficient condition for which the sys-
tem is asymptotically stable and globally convergent to a
unique solution.

We organize the remainder of the paper as follows: In
section 2, we define the class of QCQP problems under
consideration. In section 3, we develop compact primal-
dual dynamics for seeking the saddle-point solution of the
Lagrangian reformulation of the QCQP problem. We also
provide convergence analysis of the primal-dual algorithm
using concepts of Lyapunov stability and we suggest neural
network architecture for efficient implementation of the
QCQP. In section 4, we consider a simulation example
using economic power dispatch problem incorporating
transmission losses.

The notation adopted throughout the paper is standard.

2. PROBLEM FORMULATION

We consider quadratically constrained quadratic program-
ming problem of the form:
minimize f(x) (1a)

x
subject to g;(x) =0, i=1,--+,m,
r € X, (1c)

with
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1
f(x) = §$TH0$+QOT1‘+7“0, (2)
1
g9i(w) = §$TH¢I+(]¢TI+T¢,Z' =1, m, (3
X:{m|lz§xz§ulvl:]—,an}7 (4)

where H; € R"*™ h; € R" and r; € R,i = 0,---,m are
the problem data, and [ € R” and v € R" with 0 <[ < u
are respectively the lower and the upper bound on the
variable x € R™ to be optimized. We assume that Hj is
symmetric positive definite (i.e. Hy = HI > 0) and that
H; is symmetric positive semi-definite (i.e. H; = HI >
0; ¢ = 1..m) such that problem (1) is strictly convex
and solvable in polynomial time (Boyd and Vandenberghe,
2004).

We define a Lagrangian function £(z, A, i, ) in terms of
x and the multipliers A(indefinite) € R™, 0 < p € R™ and
0 <@ € R™ for problem (1) as follows:

L()=fz)+ Y Nigi(e) + p" (1 —2) + 7" (@ —u) (5a)
i=0

1
= 5a" HV )z +q(\) 2 +7(A) + p" (Az = b), (5b)
where
H(\) =Ho+ Y NHi, g\ =0+ > Aigi,
=0 =0

r(\) —rwimi, o= M JA= {‘II] and b = [;l] .

By the well-known saddle-point theorem (Boyd and Van-
denberghe, 2004), a vector z* solves problem (1) if there
exist multipliers A\*, u* such that together with z*, the
point (z*, A*, u*) is a saddle-point solution of (5) i.e. the
following inequality holds:

L(x* A p) < L, N u") < Lz, X, p1"). (6)

The vectors z* and (A*, u*) are said to be primal optimal
and dual optimal with no duality gap if the following
Karush-Kuhn-Tucker (KKT) optimality condition holds:

H(Nz+q\)+7—p=0, (7a)
%xTHix—i—qux—I—ri =0;i=1,---,m, (7h)
p20, p(-a)=0, (70)
E>0, f'(r—u)=0, (7d)
(l—2)<0, (x—u)<0. (7e)

In what follows, we develop three primal-dual dynamics
that enforce the KKT optimality condition (7) at equilib-
rium and in turn provide the optimal solution to problem
(1). To ensure that such solutions always exist, we make
the following assumption.

Assumption 1. (Slater Condition) There exists z* such
that I; < of < w;, ¢ = 1,---,n and g;(z*) = 0, i =
1’-.- ’m.

3. PRIMAL-DUAL DYNAMICS

A natural primal-dual dynamical system for seeking the
saddle-point solution of (5) can be expressed as

i=-KV,L=-K(HNz+q\+p—p), (8a)
b= FE[VEE]Z = Fﬁ[(l - x)];_v (8c)
1 = Ig[VaLly = Ipl(a — u)l} (8d)

for i = 1,---,m, where V£, VAL, Vi£L, and VL are
the partial gradients of £(x, A, 71, u) with respect to z, A,
1, and p, respectively. The parameters K, I', I, and I},
are diag;)nal matrices with ith diagonal components K;, I,

Iz, and I}, , respectively, and [w]} is an elementwise

projection to the positive orthant defined as

wl ={y

for all w, z € R.

w>0orz>0
otherwise

(9)

The primal-dual dynamics (8) fall into the general gra-
dient dynamics of (Arrow et al., 1958), and the stability
and convergence properties for such dynamics have been
investigated for congestion control (Feijer and Paganini,
2010) and for power optimization applications (Ma and
Elia, 2013; Cherukuri et al., 2016). However, inspired by
Costantini et al. (2008), we develop more compact primal-
dual dynamics that can easily be implemented using a
neural network architecture and with fast analog circuits
(Levenson and Adegbege, 2016). We also construct suf-
ficient conditions via Lyapunov stability to guarantee the
asymptotic convergence of the primal-dual dynamics. Note
that the stability proof of Costantini et al. (2008) is invalid
for our case as the piecewise linear function corresponding
to (lc) is not necessarily odd which is an underlying
assumption in (Costantini et al., 2008).

3.1 Concise Primal-Dual Dynamics

To derive concise primal-dual dynamics for (1), we adopt
the bound-constrained reformulation of the Lagrangian
function (5) where only the equality constraint is incor-
porated as

F(@,A) = %xTH(A):c "Nz (). (10)

The bound constraint (1c) is enforced via the following
quadratic programming (for fixed \) sub-problem :

minizmize L(z,\) (11a)
(11b)
With this, the multipliers 1z and p have been eliminated
resulting in a condensed reformulation for (5). Observe
that the partial gradients of £(z, ) with respect to = and
A are respectively,

VoL(w,\) = Vo L(x, A1, 1) = H(A)z + () and

subject to | < x < u.

~ 1
V. L(x,\) =V, L(x,\, [, p) = izz:THi:r +qlz+ g

The primal-dual dynamics for the condensed problem (11)
can be implemented in two different forms. First we define
the non-linearity

o(z) = [o1(x1) ... opn(2n)]”

where each o;(x;) is a pieceiwise linear function

(12)
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