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Abstract: The design, modelling and analysis of a prototype feedback based accelerometer
is presented. A distributed Mass Spring Damper model is used to formulate the model for
guitar string with a proof mass via Euler Bernoulli beam theory. A sliding mode controller is
formulated through performance parameters which include the settling time and overshoots in
the proof mass. Comparative results of Euler Bernoulli based sliding mode analysis versus the
proportional controllers are used to demonstrate the superiority of the sliding mode approach.
The key contribution is formulating a criterion for sliding mode control of a Euler-Bernoulli
distributed mass problem.
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An accelerometer is an instrument used to measure ac-
celeration or to detect and determine vibration (Varum,
2013). It measures acceleration through conversion of mo-
tion into an electrical signal (Watson, 2006). It is com-
monly used in various applications for instance control
systems and navigation guidance (Majlis et al., 2002). It
may be used in the measurement of vibration, motion,
shock and seismic. A standard accelerometer comprises of
a proof mass, spring and damper with a casing (Krishnan
et al., 2007). When the casing encounters motion, it is pro-
pelled with an acceleration causing the proof mass within
the casing to move. Given steady state conditions, the
force acting on the mass is balanced by the tension in the
spring. The extension of the spring provides a measure of
the applied force which is proportional to the acceleration
(Krishnan et al., 2007). A basic accelerometer is usually
modified resulting in a Micro Mechanical System (MEMs)
or pendulous accelerometer. The merits of a pendulum
accelerometer include its high resolution, dynamic range,
capacity to handle strategic thrust axis and its linearity
(Vohra et al., 1997). Optical and feedback accelerometers
in comparison to piezo-resistive, electrodynamics and open
loop accelerometers have a wide frequency range, are more
accurate and are mostly non-contact.

(Macheiner and Brunner, 2009) designed a fibre optic
cantilever sensor that is used for static and kinematic tilt
determination. The sensor has a very high precision and
range. (Villnow et al., 2011) develop and investigates a
novel fibre optical accelerometer with a capacity to op-

�

erate in extreme conditions. This sensor can be used to
monitor vibrations and can withstand very high tempera-
tures. (Lopez-Higuera et al., 1996) designed a fibre optic
accelerometer that measures accelerations ranging from
small to medium sized frequency with ability to withstand
very high temperatures. It can therefore be concluded that
fibre optics accelerometers have very high precision, range
and can operate under extreme conditions.

The guitar string can be characterized as a cantilever beam
hence it can be modelled using several methods. Some
of these methods include the spring- mass damper model
and the Euler Bernoulli beam theorem. The Mass Spring
Damper (MSD) (Bentley, 2005) is easy to formulate and
implement, however, this model lumps some parameters
therefore it does not provide an accurate representation of
the system behaviour. To mitigate this problem, The Euler
Bernoulli beam theory is used together with its boundary
conditions. The Euler-Bernoulli beam model has a demerit
of over estimating the spatial frequencies (Bashash et al.,
2008). Euler-Bernoulli’s final equation with no closed
form solution can be solved using analytical techniques
for instance Assumed Modes Method (ASM) (Bashash
et al., 2008). Ordinary Differential equations (ODEs)are
used to describe the lumped parameter model whereas
the distributed beam models are described using Partial
Differential Equations (PDEs)(Bashash et al., 2008). The
lumped parameter model have a demerit of having high
mass and as a result an increase in energy usage and
high inertial forces. (Bashash et al., 2008) documents four
models of transversely vibrating uniform beam models.
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These models are: the Euler Bernoulli, Rayleigh, Shear
and Timonshenko. Boundary and initial conditions of the
PDEs are used to describe this models. The slenderness
ratio (The ratio of the fibre diameter to the beam length)
of the pendulum for the system described in section 1 was
found to be greater than 100 thus the Euler Bernoulli beam
theorem was applicable.

Controllers are designed to minimize uncertainties in a
control system. The proportional controller which is linear
provides an immediate action to the controller. It is
simple and easy to implement. However, it only has
one tuning parameter which makes it difficult to use in
systems that have multiple parameters. The proportional
controller also is unable to handle abrupt large deviations
between the input and output in the system. The root
locus can be used with the proportional controller to
find a comprise to the system’s critical parameters for
instance damping and stability. However, given a system
that needs constant monitoring of stability, steady state
error and damping, the proportional controller with root
locus is not sufficient (Zhu et al., 2013). Proportional
Intergral Deriative (PID) is a control technique employed
to deal with issues experienced by using the proportional
controller. It is based on three controllers namely The
proportion which provides instant response to the control
error, Integral which drives the constant error to zero and
the derivative which acts upon the change of the error. It
has the advantages of having three gain parameters that
can be tuned to achieve better results. However, it is a
linear controller and can not handle uncertainties within
the system brought about by the complexity of the system
(Ang et al., 2005). The sliding mode(SM) control technique
is a non linear method known for its accuracy, robustness,
easy tuning and implementation. It has the advantages
of low sensitivity to a system’s parameter variations and
disturbances. It also reduces the complexity of feed back
design by decoupling of the entire system into independent
partial components of lesser dimensions. The ability to
choose sliding mode functions ensures that the dynamic
behaviour of a plant are tailored. The demerits of the
sliding mode is that it has chattering (Utkin, 2008).

Electromagnets are used in numerous applications for in-
stance in electronics and surgical operating theatre. They
are also employed in control systems as position actuators.
They have previously been used in high gain and precision
magnetic levitation systems and pendulum control (Duka,
2010). Giron-Sierra (2001) documents the control of an
inverted pendulum using an on and off action through
two electromagnetic pendulum. The force relationship is
found to be of an exponential form and depends on several
constants, the distance between the electromagnets and
the pendulum. Ida (2012) uses a mass with an embedded
magnet in the model. The force generated in this model is
determined by use of the Finite element method and the
results are stored in a look up table. Austin and Wagner
(2013) uses a spherical magnet for actuation in a system
made up of a damper and a spring. Each element of the
electromagnet is modelled as reluctance. The pendulum
swings through an angle the model accounts for variation
by determining the hypotenuse length. Due to their high
gain and precision, electromagnets are commonly used for
actuation.

The goal of this paper is to formulate a sliding mode
controller through performance parameters which include
the settling time and overshoots in the proof mass. The
main contribution is formulating a criterion for sliding
mode control of a Euler-Bernoulli distributed mass prob-
lem. The paper is structured as follows: Section 1 of
the report has an introduction which includes problem
formulation, research background and literature review.
Section 2 details the system description. It is followed by
the modelling of the system and controllers in section 3.
The results and discussion are presented in section 4 and
5. Recommendations and future work are in section 6 and
7 respectively.

1. SYSTEM DESCRIPTION

Figure 1 and 2 below show pictorial view of the built
prototype and the physical diagram.

Fig. 1. Schematic view of the accelerometer.

Fig. 2. pictorial view of the accelerometer.

Fig. 3. Physical diagram of the accelerometer.
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1.1 Working principles of the accelerometer

From figure 1, 2 and 3, An acceleration a is exerted on the
accelerometer’s casing. It produces an inertia force ma on
the proof mass m This force is then counter balanced by
the force of the permanent magnet on the current feed
back coil. Any unbalanced forces is detected by the elastic
force element resulting in a motion of the proof mass.
The motion is detected as a displacement by the position
detecting sensor. The sensor’s output voltage is amplified
to give a current output which is fed back to the coil
through a standard resistor resulting in an output voltage.

1.2 System block diagram

Figure 3 below shows the system’s block diagram. The
cantilever beam is modelled using MSD model, the Euler
Bernoulli beam theorem.

Fig. 4. system block diagram.

2. MODELLING

2.1 Modelling guitar string as a MSD Model

Two modelling methods are presented in this paper for
comparison purposes. In this section, modelling of the
system using the Mass Spring Damper model is shown
(Jalili et al., 2004).

mcẍc + b(ẋc − ẋm) + k(xc − xm) = fc(t)

mbmẍm + b(ẋm − ẋc) + k(xm − xc) = fm(t) (1)

where

mbm = mb +mm = mm +
ρL

3

b =
B

φ2(L)

∫ L

0

φ2(z)dz

k =
3EI

L3
(2)

xm is the displacement of the tip mass along the x axis,
mbm is the mass of the beam, mm is the tip mass, xc is the
displacement of the casing along the x axis, mc is the mass
of the casing. b is the damping force and k is the equivalent
linear spring stiffness, rho is the mass per unit length, L
is the length of the beam, B is the viscous damping, phi
is the mode shape function and EI represents the rigidity
of the beam. fm(t) and fc(t) is the force acting on the tip
mass and casing respectively.

2.2 Modelling the guitar string as an Euler Bernoulli beam

In this section, the system is modelled as an Euler
Bernoulli beam for comparison purposes. Given Tc, Tb

and Tt is the kinetic energy of the casing, beam and tip
mass, T is the total kinetic energy, U is the total potential
energy and E is the rigidity of the beam, equation 3 shows
the different relationship that exists between the different
parameters defined (Jalili et al., 2004).

T = Tc + Tb + Tt (3)

Tc =
1

2
mcẋ

2
c(t)

Tb =
1

2

∫ L

0

ρ(ẋc(t)− u̇(z, t))2dz

Tt =
1

2

∫ L

0

ρ(ẋc(t)− u̇(L, t))2 (4)

U =
1

2

∫ L

0

EIu2
zz(z, t)dz (5)

where ρ is the mass per unit length and W is the work
done. The external forces fc and fn are included using the
principle of virtual work.

δW = fc(t)δxc(t) + fm(t)δu(L, t)

−B

∫ L

0

ut(z, t)δu(z, t)dz (6)

The equations of motion are calculated by using Hamil-
ton’s principle ∫ t2

t1

(δT − δU + δW )dt = 0 (7)

Resulting in the following equations

ρ(utt(z, t) + ẍc(t)) +But(z, t) + EIuzzzz(z, t) = 0

(mc + ρL+mm)ẍc(t) +

∫ L

0

ρutt(z, t)dz

+mmutt(L, t) = fc(t) + fm(t) (8)

The following are the boundary conditions (Jalili et al.,
2004)

u(0, t) = 0, uz(0, t) = 0, uzz(L, t) = 0

mm(ẍc(t) + utt(L, t))− EIuxxx(L, t) = fm(t) (9)

The boundary conditions contain forces which makes them
non homogeneous. As a result, it is difficult to apply mode
shape approach. It is therefore imperative to introduce
an essential transformation that shifts the forces from the
boundary conditions into the dynamic equation such that
the boundary conditions are now homogeneous. Equation
10 may be termed as the transformation equation (Jalili
et al., 2004).

u(z, t) = v(z, t) + fm(t)g(z) (10)

where g(z) is a function, v(z, t) is the second defined
distributed parameter. Substituting the transformation
into previously defined equations of motions results into
equation 11

∫ L

0

ρ(vtt(z, t) + f̈mg(z) + ẍx)dz

+B

∫ L

0

ρ(vt(z, t) + ḟmg(z))dz

+

∫ L

0

EI(vzzzz(z, t) + fm(t)gzzzz)dz = 0 (11)
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