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Abstract: Currently, there are an increasing number of power electronics converters in electrical
grids, performing the most diverse tasks, but most of them, work as constant power loads
(CPLs). This work presents a sufficient condition for the local stability of dc linear time-
invariant circuits with constant power loads for all the possible equilibria (depending on the
drained power) of the systems. The condition is shown as a method with successive steps that
should be met. Its main step is expressed as a linear matrix inequality test which is important
for easiness of verification reasons. The method is illustrated with two examples: a single-port
RLC circuit connected to a CPL and a two-port linear dc circuit connected to two CPLs.
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1. INTRODUCTION

The current trend in power grids is to increase the pres-
ence of electronic power converters due to their versatility
to transform, condition and accumulate electrical energy.
However, most of these devices behave as constant power
loads. This type of non-linear loads can compromise the
stability of the electrical system since, incrementally, they
behave as negative resistive elements. So, this characteris-
tic puts at risk the quality of the supply and the integrity of
the electrical system. For these reasons, the development
of new and, if possible, easy to check conditions for the
stability of grids with CPLs is required.

The stability of electrical circuits with constant power
loads connected to them has been studied using different
approaches in the literature, i.e. Middlebrook (1976), Bel-
khayat et al. (1995b), Belkhayat et al. (1995a), Sanchez
et al. (2014). See, also, the recent survey by Singh et al.
(2017) for a state of the art in the behaviour and typical
effects of CPLs, stability criteria and compensation tech-
niques.

In this work, we present a new frequency domain method
applied to the linearization of dc grids feeding CPLs
around the equilibrium. This method is based on the
properties of negative imaginary (NI) systems, e.g. Pe-
tersen and Lanzon (2010), and it establishes a sufficient
condition for the stability of the system for all the possible
equilibria that come from sweeping the power of the CPLs.
To illustrate the method we apply it to two examples: one
port and a two port linear time invariant (LTT) dc electrical
circuits connected to CPLs. Due to the method is based on
linear matrix inequalities (LMI) conditions its numerical
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solution can be computed efficiently by means of convex
programming.

The paper is organized as follows. Section 2 shows some
previously published results on NI systems that will be
used subsequently. Sections 3 and 4 describe and formalize
the problem and present the sufficient condition for the
stability, respectively, Section 5 shows two examples: a
one-port dc RLC circuit connected to a CPL and a two-
port dc RLC with two CPLs. Finally, Section 6 summarizes
the contributions and propose some future extensions.

2. PREVIOUS RESULTS

Some previous results that characterize NI systems in the
frequency domain and in the state space are reproduced
in this section to facilitate the understanding of the
subsequent developments.

First, the definition of an NI transfer function matrix and
an NI LTI system.

Definition 1. (Petersen and Lanzon (2010)). The square
transfer function matrix R(s) is negative imaginary if the
following conditions are satisfied:

1) All the poles of R(s) lie in the OLHP.
2) for all w > 0,

JjIR(jw) — R*(jw)] > 0.

A linear time-invariant system is NI if its transfer function
matrix is NI.

The NI property can be checked, from a state-space
description of the system, using the Lemma 2. Besides,
Corollary 3 allows checking, incrementally, if the system
is strictly negative imaginary (SNT). It is worth to remark
that the main condition to check in Lemma 2 is described
by an LMI and, then, it is a convex problem.
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Fig. 1. A positive feedback interconnection.

Lemma 2. (Petersen and Lanzon (2010)).
Consider the minimal state-space system

& = Az + Bu, (1)
y = Cx + Du, (2)

Where A € R**" B € R*™™ (C € R™*" and D €
R™>™_ The system (1), (2) is NI if and only if

1) A has no eigenvalues on the imaginary axis,

2) D=D", and

3) there exists a matrix ¥ = YT >0,Y € R, such
that

AY +YA" <0, and B+ AYCT =0.

Corollary 3. (Petersen and Lanzon (2010)). If the mini-
mal state-space system (1), (2), satisfying conditions (1),
(2), and (3) from Lemma 2, additionally meets that

4) The transfer function matrix M (s) = C(sI—A)"!B+
D is such that M(s) — M(—s)" has no transmission
zeros on the imaginary axis except possibly at s = 0,

then the system is strictly negative imaginary (SNI).

Finally, next theorem guarantees the stability of the posi-
tive feedback interconnection of Fig. 1.

Theorem 4. (Song et al. (2011)). Given that M(s) is NI
and N(s) is SNI, and suppose that M (co)N(oc0) = 0 and
N(oo) > 0. Then, the positive-feedback interconnection
of these two systems illustrated in Fig. 1 is internally
stable if and only if the maximun eigenvalue of the matrix
M(0)N(0), denoted by A(M(0)N(0)), satisfies
AM(0)N(0)) < 1. (3)

3. PROBLEM STATEMENT

The system of Fig. 2 consists of a linear dc circuit %,
including dc voltage and current sources, with m CPLs
connected to it. These loads do not behave like conven-
tional impedances, instead, their characteristic curves, in
the voltage-current plane, are first and third quadrant
hyperbolas. Thus, their incremental impedance is negative.
The goal is to find an easy to check sufficient condition
to determine if the whole system is locally stable for all
the possible values of power in the CPLs for which an
equilibrium exists in the system. In order to do that, in
this Section, the system is defined and, after that, its
linearization is calculated.

In the considered networks, see Fig. 2, ¥ is a dc LTT RLC
network consisting of an arbitrary interconnection of re-
sistors (R), inductors (L), capacitors (C), current sources
(I5), voltage sources (FEs) and LTI magnetic couplings®.
Assume that ¥ has a well-defined minimal order state-

1 For the sake of brevity, the time arguments, t € R, of the circuit
variables are not included unless necessary.
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Fig. 2. LTT RLC network including sources connected to
m CPLs (m-port case).
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Fig. 3. Thevenin equivalent of the circuit ¥ in Fig. 2.

space realization, formulated in terms of the d-inductor
currents and g¢-capacitor voltages, as

&t =Ax+ Bi+ f,
v=Cx+ Di, (4)

Vp,tp, = Py >0, 1=1,...,m.

where i = [ip,,ipy; ..., 0p,,] 1S the input vector, v =
[Upys Upgs -er Up,,| is the output vector, f is a vector of
dc voltage and/or current constant sources, P; are the
constant powers absorbed for each port CPL, and A €
R*™ "™ B e R"™™ C € R"™ "™ and D € R™*™ are constant
matrices with n = d + q.

The port input-output representation of ¥ in the Laplace
domain is

Vi(s) = G(s) I(s) + F(s), (5)
where s is the Laplace variable, V(s) = L{v(t)},I(s) =
L{i(t)}. G(s) = C(sI — A)"'B+ D and F(s) = C(sI —
A)~1f are rational matrices with real coefficients.

The Thevenin equivalent circuit of X, see Fig. 3, is
V(s)=—Z(s)I(s) + F(s). (6)

Matching (5) with (6) we clearly identify G(s) as the equiv-

alent multiport impedance with a negative sign G(s) =

—Z(s), and the equivalent multiport voltage source as

Assuming a given set of fixed CPL powers P, := col{ P,,,
P.,,...,P.  }, if the equilibrium of system (4) exists, a set
of port voltages ve := col{ve,,Vey, ..., Ve, + and a set of
port currents i, := col{ie,, ey, ---s tc,, } are obtained. Then,
the third equation in (4) can be linearized around this
equilibrum resulting

Ai = —KAv+~yAP. (7)

where Ai = i — i, Av := v — v, and AP := P —
P, are the incremental vectors of port variables, K :=
. (P, P, P . . . .
diag{ -5+, 752, ..., 75 } is a constant diagonal gain matrix,
€1 €2 em

1

P ey ?

and 7 := diag{-> ..., ==} is the gain of incremental
€1 em

power disturbances. Obviously, in equation (7) —K rep-

resents the negative incremental admitance of the CPLs.

Applying Laplace transform to (7), we obtain the linear
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