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Abstract: Battery Energy Storage Systems (BESS) can mitigate effects of intermittent energy
production from renewable energy sources and play a critical role in peak shaving and demand
charge management. To optimally size the BESS from an economic perspective, the trade-
off between BESS investment costs, lifetime, and revenue from utility bill savings along with
microgrid ancillary services must be taken into account. The optimal size of a BESS is solved
via a stochastic optimization problem considering wholesale market pricing. A stochastic model
is used to schedule arbitrage services for energy storage based on the forecasted energy market
pricing while accounting for BESS cost trends, the variability of renewable energy resources,
and demand prediction. The uniqueness of the approach proposed in this paper lies in the
convex optimization programming framework that computes a globally optimal solution to the
financial trade-off solution. The approach is illustrated by application to various realistic case
studies based on pricing and demand data from the California Independent System Operator
(CAISO). The case study results give insight in optimal BESS sizing from a cost perspective,
based on both yearly scheduling and daily BESS operation.
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1. INTRODUCTION

The need for a Battery Energy Storage System (BESS) to
serve as a buffer for electric energy is palpable for micro-
grid systems that have a large penetration of intermittent
renewable energy sources. A BESS may be economical for
both islanded microgrids and a for grid-connected system,
as a BESS increases reliability during outages and provides
revenue or grid services such as peak shaving, voltage
regulation, and arbitrage power trading during normal
operation (Lasseter, 2002; Donadee, 2013; Kousksou et al.,
2014) .

Applications of a BESS can be found in various settings
to assist with renewable power integration. It has been
applied to the problem of harmonic distortion, generally
known as voltage regulation, which may occur in stan-
dalone operation (islanding) of a microgrid (Yang et al.,
2014; Hanley et al., 2008). Specifically, a BESS can be
used to reduces the effects of Photo Voltaic (PV) and wind
energy production variability (Teleke et al., 2010; Zheng
et al., 2015) by different control strategies such as a rule-
based control and a model predictive control (MPC). A
BESS in conjunction with PV and demand forecasting can
help shift renewable generation to times of higher power
demand or lower electricity price via an MPC technique
(Sevilla et al., 2015). A mathematical model for a large
BESS system was performed in Zhang et al. (2015) as a

reduced four state space equations to model the relation
between the bulk power grid and a BESS.

The benefits of BESS in coping with variable renewable
energy production are evident, but the costs associated
with financing and installing BESS are often prohibitive.
In particular for residential settings (Holbert and Chen,
2015), a BESS may not produce sufficient revenue from
energy arbitrage to achieve investment payback without
government incentives to fund the BESS. At the same
time, BESS costs are anticipated to drop in the near
future and investment banks are expecting the payback
time for unsubsidized investment in electric vehicles (EV)
combined with rooftop solar and BESS (Houchois et al.,
2014) to reduce to around six to eight years. Also, the
economies of scale due to the adoption of EV and rapid
improvement of battery technologies will likely reduce
BESS prices. As a result, the projected reduction in pricing
of BESS is expected to lead to a return on investment
within a time frame of three years by 2030 (Nykvist and
Nilsson, 2015; Sachs, 2014).

Optimal BESS sizing from an economical perspective must
find the optimal trade-off between critical design param-
eters that include BESS sizing, BESS life expectancy due
to battery degradation and total revenue from utility bill
savings due to energy arbitrage. Holistic BESS scheduling
models that aim to capture all cost aspects were developed
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in Nguyen et al. (2012) to maximize the overall profit of an
existing wind-storage system. Economic models were used
in Ornelas-Tellez et al. (2014) to predict the market price
to optimize the operation of existing energy resources in
a microgrid, but no future investments were considered.
Operational stochastic control and optimization in Zachar
and Daoutidis (2016) were designed as an MPC to ensure
sufficient energy as an economic dispatch problem.

Motivated by the need to find the optimal BESS in-
vestment as a function of time considering capital and
O&M costs, as well as operational revenues, this paper
proposes a stochastic optimization approach that leverages
mixed integer and real (convex) optimization to formulate
financially optimal BESS sizing solutions. The stochastic
optimization is used to address the variability in prediction
and forecasting of energy and BESS pricing to determine
when is the optimal time to invest in a BESS. The convex
optimization is used to compute globally optimal solutions
for BESS sizing parameters, given the operational model
and the price variability in the day-ahead market.

The paper is outlined as follows. First, the problem formu-
lation and the system topology for financial optimization
are summarized in Section 2. The mathematical framework
is summarized in Section 3, explaining the optimization
techniques, objective functions and the constraints. Dif-
ferent operating scenarios are discussed and compared in
Section 4 to cover cases of extreme high/low power vari-
ability in solar, wind and demand patterns. In Section 5,
different BESS installation cases and optimal BESS sizing
for a case study of a real microgrid are presented.

2. SYSTEM TOPOLOGY AND PRICING

2.1 Microgrid and Market Structures

Fig. 1 illustrates the structure of power market and mi-
crogrids used in this paper. The microgrid is modelled as
a subset of the market µG ⊂ N , and demand, renewable
generation, and BESS power in both market (m) and mi-
crogrid (µ) are denoted by Pd, PRE , and Pb, as illustrated
in Fig. 1.

Market

~

~
Power exchange

Data exchange

MCP

µG µG

µG
Pg,1

~ Pg,2

Pg,N
Pd,1

Pd,2 Pd,N
…

Pd,µ

Pµ

Pb,µ

PRE,µ

Market (m):
Pg,i Generator i
Pd,i Demand i

Microgrid (µG):
Pd,µ Demand
Pb,µ Power from or the BESS
Pµ Power purchased from the market
PRE,µ Power generated from renewables

PRE,1
PRE,2

PRE,N

Fig. 1. Power market system architecture.

The net demand Pnet, which is the actual market demand
(including all microgrids’ demand) minus the total renew-
able power available in the market, is computed via

Pnet = Σi∈N (Pdi − PREi) = Σi∈NPgi (1)

where Pgi indicates power provided by generator i and

Pµ = Σj∈µG

(
Pdj ,µ + Pbj ,µ − PREj ,µ

)
(2)

2.2 Market Clearing Price Modeling

Assuming that the microgrids will pay the hourly market
clearing price (MCP) in the future instead of predefined
constant or time-of-use (TOU) rates, a price model is
required to anticipate the MCP at different times for
optimal operation of microgrids.

Typically, Independent System Operators (ISO) aggregate
the bids received from generators and cross it with the net
demand hourly profile of the market to define hourly MCP.
It is assumed that the MCP is solely a function of the net
demand in that λP is linearly correlated with the market
net demand Pnet via

λP = α Pnet + β. (3)

This pricing modeling has been validated in the literature
(Huang et al., 2015; Verzijlbergh et al., 2014). It is assumed
for simplicity that the parameters of the MCPmodel (α, β)
remain constant throughout the 15 year modeling horizon.
However, the optimization could consider more detailed
and dynamic models where the pricing model parameters
vary as generators are added or removed.

To model the effects of different generators’ bidding strate-
gies and maintenance schedules on different days of the
week (weekdays and weekend) and different seasons (sum-
mer and non-summer) on MCP, four distinct MCP models
are fit from historical CAISO demand and pricing data.

2.3 Microgrid and Power Market Growth

For realistic financial predictions and optimal sizing of the
BESS, the financial model considers the annual growth of
both the market and the microgrid. The growth of the mar-
ket and the microgrid takes into account all components,
i.e. demand, solar and wind.

For simplicity, we assume a fixed annual solar growth
(ASG) defined by

ASG =
St+1y − St

St
× 100%

where St represents the vector of hourly solar profiles of
the current year. Hence, with a fixed ASG, the net solar
power St+1 contribution is predicted to grow exponentially
as

St+1 =

(
ASG

100
+ 1

)
St

with ASG > 0. Similarly, we assume a fixed annual wind
growth (AWG) as

AWG =
Wt+1y −Wt

Wt
× 100%.

The CAISO historical demand data shows different rates
of increase at different hours of the day, specifically power
demand at the peak hour has grown faster than at off-
peak hours. to account for this effect, we define an annual
demand growth profile (ADGP) that varies by hour of the
day as

ADGP = (Dt+1 −Dt)�Dt × 100%,

where Dt is the vector of hourly power demand at year t
and � denotes element-wise division.
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3. STOCHASTIC BESS OPTIMIZATION

3.1 Objective Function

A stochastic programming model is developed to cap-
ture all possible scenarios of solar and wind generations,
demand variations, and supply bidding strategies in the
BESS sizing and operation problem.

The objective function is defined to minimize the expected
energy cost, i.e. the sum of energy purchase costs and
the BESS investment cost over a time period T while
considering annual growth in solar, wind and demand.
Mathematically, for an optimization horizon T and sce-
nario set of Ω, the objective function is defined as

min
Pbmax ,Pb

Σt∈T {Jb,t +Σi∈ΩPriJi,t} · vt − vb,t · vt, (4)

where Pbmax
and Pb are the power rating and the vector of

dispatched power of the battery respectively. Pri refers to
the probability of a scenario i and

i Jb,t refers to the investment cost of BESS installed in
year t.

ii Ji,t is the total cost of energy purchased from the
market in year t for the scenario i, and is given by

Ji,t = ΛT
i,tPi,t∆t.

Pi,t and Λi,t are respectively the hourly vectors of
power demand from the energy markets and MCP in
year t and scenario i, and ∆t is the time difference
between two consecutive time steps.

iii vb,t accounts for the remaining value of the unexpired
BESS purchased at time t at the end of the simulation
period.

iv As is common in economic models vt = (1 − γ)t

discounts the monetary value in future years using
an annual interest rate of γ.

3.2 Constraints

Resource Adequacy: At any time step, the microgrid
control center (MGCC) must ensure that there is ade-
quate power to supply demand. Therefore, any mismatch
between the power demand and the summation of solar
power output, and BESS discharging power must be pur-
chased from the market to keep the power balance at any
time step t and scenario i. This constraint is summarized
as

PREi,t + Pbi,t + Pi,t = Li,t (5)

where Pi,t is the power purchased from the market.

Battery Constraints: First, the battery charging/ dis-
charging power must be between the limits, i.e.

−Pbmax
≤ Pbi,t ≤ Pbmax

To avoid damages due to a deep (dis)charge cycle of the
battery, the stored energy in the battery is constrained by
its maximum and minimum SOC limits (ρmin, ρmax) as

ρminEbmax
≤ Ebi,t ≤ ρmaxEbmax

where ρmin and ρmax are typically around 10% and 95%.
The energy stored in the battery is denoted by Ebi,t and
calculated via

Ebi,t = Σt
h=1Pbi,h∆t+ Ebi,0

with Ebi,0 as the initial BESS energy.

It is also desired to keep the final SOC of the BESS equal
to its initial value at the end of each day. This constraint
is needed to avoid transferring energy between days and
included via

Ebi,t1
= Ebi,0

for any t1 ∈ {24k hours, k ∈ N}. Finally, the ratio be-
tween the nominal power rating and energy rating of the
BESS implemented by

2× Ebmaxi
= Pbmaxi

as the last battery constraint. Obviously, more advanced
battery constrainst that take into account parasitic loss
and efficiency parameters could be used to provide even
more realistic battery constraints.

Power Congestion Constraint A power congestion con-
straint limits the power purchased from the market due to
the physical limit of the microgrid at the point of common
coupling (PCC) or upstream power lines. Power congestion
constraints may, for example, limit the BESS’ ability to
charge at Pbmaxi

during (or within) the cheapest price. By
including a power congestion constraint

−PL ≤ P ≤ PL (6)

the BESS will be charged over a longer time frame to
accommodate the congestion limit PL.

3.3 Scenarios

The most accurate results would be obtained by simulating
a typical meteorological and climatologically representa-
tive timeseries over a year (or longer), but this is com-
putationally intensive. Instead, we consider year’s (2015)
worth of data, downsampled to a set of typical days and
these days are repeated each year.

Subsequently, a manual clustering is applied to classify
demand profiles in representative patterns. The clustering
assembles the data into four main groups that resemble
a summer/non-summer and weekday/weekend separation.
Fig. 2 illustrates all demand profiles clustered in those four
groups, each identified by a distinct color. The clustering
can then be used to formulate an average for each group
as depcited in the top plot of Fig. 3.
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Fig. 2. Daily demand profiles for the CAISO market for one
year (2015). Colors denote different clusters classified
by (week)days and (non)summer season.
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