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Abstract: This paper focuses on high-level control and decision-making for an autonomous car.
We develop a hybrid probabilistic model that describes the motion of a car and its surrounding
traffic on a two-lane highway/road, where the acceleration of the car and the lane changes
serve as control variables. Using approximate dynamic programming (ADP) techniques and an
enhanced version of the value iteration algorithm, a control policy is obtained that maximizes
the expected time that the car maintains a prescribed minimum (safe) headway. Simulation
results for different settings are provided to validate the approach.
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1. INTRODUCTION

Autonomous (driverless) cars may improve road safety,
provide greater convenience for humans, and lower cost
of transportation in the future. While feasibility of au-
tonomous driving has already been demonstrated, see,
for example, Markoff (2013), advanced control algorithms
need to be developed to achieve high levels of safety and
ride comfort. We approach this objective by developing a
model-based control strategy for autonomous driving that
maximizes the time that a prescribed minimum headway
relative to the in-front vehicle is maintained.

Our approach is based on a hierarchical control structure,
where a high-level controller provides optimal decision-
making and low-level controllers execute the decisions by
regulating the longitudinal and lateral motion of the car.
While the focus of this paper is on high-level control,
relevant low-level controllers were discussed, for example,
by Hatipoglu et al. (2003), Guo et al. (2014), and Hu et al.
(2016). One of the earliest studies on modeling decision-
making in driving can be found in Worrall et al. (1970)
who used Markov chains calibrated from real traffic data.
Gipps (1986) proposed a set of deterministic rules for lane-
changing decisions for cars traveling at a constant velocity.
More complex probabilistic approaches were developed, for
example, by Wu et al. (2000), Toledo et al. (2007), and
Schubert et al. (2010). Wang et al. (2015) proposed a game
theoretic approach for lateral and longitudinal decision-
making, where the control problem was decomposed into
car following and lane-changing sub-problems in order to
minimize a cost function.

The contribution of this paper is a novel approach based on
stochastic drift counteraction optimal control (SDCOC),
see Kolmanovsky et al. (2008). SDCOC was applied to the
car following problem in Kolmanovsky and Filev (2009)
and Zidek and Kolmanovsky (2016) with the objective of
maintaining a prescribed headway for as long as possible.

We extend this work by taking into account lateral mo-
tion as well, i.e., allowing lane changes. The application
of SDCOC provides a systematic approach to generating
driving policies that may enhance safety and ride comfort
for autonomous cars. SDCOC is based on dynamic pro-
gramming (DP) and the optimal control policy is charac-
terized by the value function associated with the optimal
control problem. However, previous applications of DP
were impeded by the curse of dimensionality and limited
to lower-dimensional problems.

In this paper, we formulate an approzimate/adaptive dy-
namic programming (ADP) approach for SDCOC which
allows the treatment of higher-dimensional problems. ADP
obtains suboptimal solutions by approximating the value
function, usually through the use of neural networks
(NNs), see Werbos (2012), Heydari (2014), and Wei et al.
(2016). In our approach, we use a feedforward NN, see
Hertz et al. (1991), combined with an enhanced version
of the value iteration algorithm developed by Zidek and
Kolmanovsky (2015).

The paper is structured as follows. Section 2 describes the
driving model. The SDCOC problem is stated in Section
3.1 and the ADP approach to compute its solution is
developed in Section 3.2. Numerical results are shown in
Section 4, where we also compare the ADP approach to
conventional DP. A conclusion is given in Section 5.

2. DRIVING MODEL

In order to compute a SDCOC policy (see Section 3), a
discrete-time stochastic hybrid model that approximately
describes the motion of a car and its surrounding traffic is
formulated in this section. While the developments in this
paper are limited to roads with two lanes, which constitute
the largest fraction of the multi-lane roads, the modeling
framework may readily be extended to more than two
lanes.
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The proposed model considers three cars. Subscript “m”
denotes the controlled car (“my car”) and subscripts “c”
and “0” denote the closest cars ahead of the controlled
car in its current lane and in the other lane, respectively.
The state vector at a time instant ¢ € Z>( is given by
Ty = [Sc.ts Sot, Ume) T, Where s. and s, are the respective
headways relative to the closest cars ahead in each lane,
and vy, is the velocity of the controlled car. In addition,
wy = [Vet, Vo]t is a random disturbance, where v. and
v, are the respective velocities of the two cars ahead. Note
that the closest car ahead of the controlled car in the other
lane is defined to be the closest car with a relative distance
s > —(d + ), where d is the length of the controlled car
and ~y provides a margin of safety (in this paper v = 0).

Um Ve
BELY 1 =S
e e
9 -2, 3 55| 4
S92 So

Fig. 1. Driving model: traffic example.

Figure 1 shows a traffic situation at which the controlled
car is driving in the upper lane (current lane) and car 1
is the closest car ahead in its current lane. The closest car
ahead in the other lane is car 3. If the velocity difference
between car 2 and the controlled car, vo — vy, is positive,
the distance between the two cars will eventually become
S9 > —d and car 2 becomes the closest car ahead in the
other lane, i.e., s, = so. Moreover, if car 3 cuts in between
the controlled car and car 1, car 3 becomes the closest car
ahead in the current lane and either car 2 (if so > —d) or
car 4 becomes the closest car ahead in the other lane. In
addition to these scenarios, there are several other possible
transitions, which are addressed by introducing a discrete-
valued variable 6.

The variable § models possible scenarios/transitions from
time instant ¢ to t+1. For the two-lane case, we can identify
seven different transitions, 6 € {1,2,3,4,5,6,7}. In the
following, c; and o; denote the closest cars ahead in the
current and in the other lane, respectively, at the time
instant ¢. Similarly c;4+1 and 0,41 denote the closest cars
ahead in the respective lanes at the time instant ¢+ 1. The
possible transitions are given by

e O = 1: ¢; remains the closest car ahead in the current
lane (¢; — ¢;41) and o remains the closest car ahead
in the other lane (0 — 0¢11).

e O = 2: ¢; remains the closest car ahead in the current
lane (c; — ct41) and a car other than o; becomes the
closest car ahead in the other lane (new car — o441).

e 6 = 3: a car other than c; or o; becomes the closest
car ahead in the current lane (new car — ¢;41) and a
car other than c; or o; becomes the closest car ahead
in the other lane (new car — 0441).

e O = 4: a car other than ¢; becomes the closest car
ahead in the current lane (new car — c;y1) and
0o; remains the closest car ahead in the other lane
(Ot — Ot+1).

e 0 = 5: 0; becomes the closest car ahead in the current
lane (0 — ¢¢41) and a car other than ¢; becomes the
closest car ahead in the other lane (new car — o¢11).

e 0 = 6: 0; becomes the closest car ahead in the current
lane (o — c¢¢41) and ¢; becomes the closest car ahead
in the other lane (¢; — o41).

e 0§ = 7: a car other than o; becomes the closest car
ahead in the current lane (new car — cy1) and
¢; becomes the closest car ahead in the other lane
(Ct — 0t+1)~

The control input vector at a time instant ¢ is given by
Uy = [amty lms]T € U = A x{0,1}, where a,, € A denotes
the acceleration of the controlled car and I, € {0,1}
indicates whether to initiate a lane change (I, = 1) or
not (I, = 0). In case Iy, ¢+ = 1, the current lane at the time
instant ¢ becomes the other lane at t+ 1, whereas the other
lane at ¢ becomes the current lane at ¢ + 1. Furthermore,
we define the relative time gaps

Ty = 5c/Vms Teso = S/ &)
We can now state the driving model, which is as follows

)

sc,tJrl

So,t+1
’Um,t + Atam,t
where At is the sampling time. Introducing Av. = ve — vy
and Av, = Vo — Um, Sc,i+1 and So 41 in (2) are given by

Tep1 = f(@e, up, wye, 0p) =

min{smax, Se,t + AtAve, }, if 0, € {1,2}

Sc,t+1 = initc (Tg,c,t; Tg,o,tv Gt), lf et S {3, 4, 7}
min{Smax; So,t + AtAve .}, if 6, € {5,6},
(3)
min{Smax, So,t + AtAv, .}, if 0, € {1,4}
So,t+1 = inito(Tg,c,h Tg,o,t, Ht)a if 0; € {27 3, 5}

min{Smax, Sc,t + AtAve .}, if 0, € {6, 7},

(4)
where Spax is the maximum headway at which a car can
be detected. If no car is ahead of the controlled vehicle
in the respective lane, we set S¢ = Smax OF So = Smax,
respectively. The functions init. and init, in (3) and (4)
set the value for s. in case 6; € {3,4,7} and for s, in
case 0; € {2,3,5}, respectively, depending on the current
relative time gaps. Both init. and init, are defined below.

As in Kolmanovsky and Filev (2009), the velocities v,
and v, are random variables that are modeled as Markov
chains and take values in the discrete set V = {v7 : j €
I,}. The probability of transitioning from w; = [v¢,v7]T
to wipr = [40"]|T, given 6, = p € {1,2,..,7}, is
P, (v1,v" v, vl p) € [0,1] for all i,j,q,r € I,. Similarly,
0 is a random variable and the probability that 6; = p €
{1,2,..,7}, given Ty ey =T" € T, Tyt =17 € T, and
Imt =q€{0,1}, is Pp(p|T",T7,q) € [0,1] for all 4,5 € Iy,
where 7 = {1V : j € It} is a discrete set.

Unlike v and v,, Ty c and T , are continuous variables and
nearest-neighbor interpolation is used to map T, . ¢ T
and Ty, ¢ T onto 7 when computing Py. The nearest-
neighbor operator that maps a point » € R, where R is a
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