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1. INTRODUCTION

Tracking and/or disturbance rejection is one of the most
important control problems. There are various approaches
in the literature (Chen et al (2002), Circa et al (2005),
Hoover et at (2004), Leva & Bascetta (2007), Tsai et al
(2014), Wang et al (2011), Willems & Mareels (2004), Xie
et al (2000)). In Mosca (1995), Chapter 4 elaborates on
the spectral factorization method for LQ control problem
(which is less general than our problem of LQ tracking
with disturbance rejection). It can also be approached
by the exact output regulation result (see Section 2.3 in
Saberi et al. (2000)). For that purpose, define an antistable
exogenous system:

x1(k + 1) = A11x1(k) , (1)

and plant with vector inputs u(k), m-dimensional, and
x1(k), n1-dimensional, and vector output h(k):

x2(k + 1) = A21x1(k) +A22x2(k) +B2u(k)
h(k) = C1x1(k) + C2x2(k) +Du(k)

}
, (2)

where (A22, B2) is a stabilizable pair, x2(k) is n2-
dimensional state vector, and consider the problem of
minimization of the criterion

J =
∑∞

k=0h
T(k)h(k) . (3)

It is shown on page 196 of Trentelman et al. (2001) (see also
Example 1) that the system (1) and (2) can be applied for
tracking and disturbance rejection, by considering that the
antistable dynamics of the reference (to-be-tracked) signal
and disturbance is actually the exogenous system (1).
It is obvious that the system (1) and (2) is unstabiliz-

able, and it belongs to the category of non-autonomous
external- and internal-stationary system (see the catego-
rization of systems at Dimirovski et at (1977)).

It is known (Theorem 2.3.1 Saberi et al. (2000)) that if the
system (A22, B2, C2, D) has no invariant zeros on the unit
circle, i.e. matrix pencil[

zI −A22 −B2

C2 D

]
(4)

has no finite generalized eigenvalues (FGEs) on the unit
circle, there is a control u(k) such that h(k) → 0 (k → ∞)
for all initial conditions x1(0), x2(0) (and consequently
the criterion (3) can be finite), and the closed loop system
without the exogenous inputs is stable, if and only if there
is a solution (V,K3) of the following matrix system:

A22V − V A11 = A21 −B2K3

C1 − C2V = DK3

}
. (5)

Note that the condition (5) is satisfied generically (well-
posed problem (see Section 9.2 in Trentelman et al. (2001)))
only when the transfer matrix from the control input to the
output is right-invertible (see Theorem 9.10 in Trentelman
et al. (2001)).

The plants with invariant zeros on the boundary of the
stability region frequently appear in control practice. In
that case, the requirement that ”the closed loop system
without the exogenous inputs is stable” of Saberi et al.
(2000) cannot be satisfied simultaneously with minimal-
ity of the criterion (3). However, this requirement is too
strong, because the system never works without the ex-
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ogenous inputs. It is stated in Stefanovski (2015) that this
requirement can be replaced with the requirement that
the unstable modes of the closed-loop system are at most
the unstable eigenvalues of the matrix A11. Then, instead
of the condition (5), it is introduced the more general
condition

A22V − V A11 = A21 −B2K3 +W1M
C1 − C2V = DK3

}
, (6)

for some matrices V ,K3 andM , whereW1 is a matrix with
orthonormal columns which span the right kernel of matrix
Y22, (W1 = null(Y22)) where (Y22,K2) is a marginally
stabilizing solution of the DARS

Y22 = AT
22Y22A22 + CT

2 C2 −
(
BT

2 Y22A22 +DTC2

)T
K2(

BT
2 Y22B2 +DTD

)
K2 = BT

2 Y22A22 +DTC2 .
(7)

Under the following assumption:

Assumption 1. The FGEs of matrix pencil I − z(A22 −
B2K2)

T in |z| > 1 pairwise differ of the eigenvalues of
matrix A11

it is proved in Theorem 5 of Stefanovski (2015) that a
minimizing control of the criterion (3) is given by u(k) =
−K1x1(k)−K2x2(k), K1 = K3 +K2V .
Consider ”two-sided” polynomial matrix P (z),

P (z) = PT
ν z−ν + · · ·+PT

1 z−1+P0+zP1+ · · ·+zνPν (8)

for some real m×m -dimensional matrices P0, P1, . . . , Pν ,
such that PT

0 = P0. The polynomial matrix P (z) is para-

hermitian, i.e. PT(z−1) = P (z). The zeros of a para-
hermitian matrix are distributed symmetrically in respect
to the unit circle |z| = 1. A problem of polynomial J-
spectral factorization is to find a nonsingular polynomial
matrix Φ(z) such that

P (z) = ΦT(z−1)JΦ(z) , (9)

and the zeros of Φ are in |z| ≤ 1, where J is a signature
matrix: J = diag{−Im− , 0m0×m0 , Im+}, for some indices
m−,m0 and m+ such that m− +m0 +m+ = m.

The standard result on existence of J-spectral factor-
ization (9) (see Trentelman & Rapisarda (1999) for
continuous-time J-spectral factorization) states that it
exists if and only if P has constant signature everywhere
on the unit circle, except on its zeros.

The polynomial spectral factorization method has been
applied for LQ control (which is slightly more general
than H2 control) in the literature: For continuous-time LQ
control via spectral factorization, we mention the works
Kučera et al. (1999) and Willems (1993). The algorithms
of these works can be adapted for discrete-time LQ control.
A drawback of these algorithms is their complexity. In
particular:

In Kučera et al. (1999), LQ control is achieved by obtaining
a matrix fraction description, a spectral factorization, and
solving a Diophantine equation for a constant matrix.
In Willems (1993), LQ control is achieved by solving a
quadratic polynomial matrix equation.

In this paper we present an H2 optimal state-feedback
control for simultaneous tracking and disturbance rejec-
tion of plants possessing invariant zeros on the unit circle.
As a technical method, we use the polynomial spectral
factorization.

The paper organization is as follows. In Section 2 we
present an algorithm for J-spectral factorization. By re-
versing arguments, in Section 3, we develop an algorithm
for H2-optimal control (tracking and/or disturbance re-
jection) based on spectral factorization of polynomial ma-
trices. Besides one polynomial spectral factorization, it
requires a canonical decomposition of the given control
system. A numerical example with invariant zeros of the
plant is given, to verify the performance of the proposed
controller.

Remarks on the notation. By the superscript T we de-
note matrix transposition. The identity matrix is denoted
by I, or In if the matrix dimension is requiring. The matrix
functions of z we write bold-faced. If W (z) is a matrix

function, byW# we denote the matrix functionWT(z−1).

By W−# we denote the matrix function
(
WT(z−1)

)−1

.

The zeros of a rational matrix (and also of P (z) (8)) are
defined by its McMillan form. The abbreviation DARS
means discrete-time algebraic Riccati system, and the ab-
breviation FGE means finite generalized eigenvalue.

2. AN ALGORITHM FOR POLYNOMIAL
J-SPECTRAL FACTORIZATION

Before we proceed with the formulation of the polyno-
mial J-spectral factorization algorithm from Stefanovski
(2004), at first we formulate the discrete version of optimal
LQ return difference equality, Ionescu et al. (1997), stated
in Proposition 1.

Proposition 1. (Discrete optimal LQ return difference
equality) For some matrices A,B and symmetric Σ with
compatible partition

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

let there exists a marginally stabilizing (in the sense below)
solution (X,F ) of the following DARS

X = ATXA+Σ11 −
(
BTXA+Σ21

)T
F(

BTXB +Σ22

)
F = BTXA+Σ21

(10)

Then for almost all complex numbers z, the following
identity holds true[

(zI −A)−1B
I

]#
Σ

[
(zI −A)−1B

I

]

=
[
I + F (zI −A)−1B

]# (
BTXB +Σ22

) [
I + F (zI −A)−1B

]
.

(11)

By marginally stabilizing solution of (10) we mean a
solution such that the eigenvalues of the matrix A − BF
lie in the region |z| ≤ 1.

In the most of applications (see Kwakernaak & Šebek
(1994), Trentelman & Rapisarda (1999)), the matrix P (z)
is given in the pre-factorized form

P (z) = ΞT(z−1)QΞ(z) , (12)

for some constant symmetric matrix Q and polynomial
matrix Ξ(z), in which the number of rows is not less than
the number of columns m. In particular, as elaborated
in Section 3, H2-optimal control problem leads to such
a decomposed polynomial matrix. For such a given poly-
nomial matrix P (z), we can avoid the result contained in
the following Proposition 3.
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