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Abstract: This paper presents a non-integer order (fractional) derivative model for modeling
lithium-ion (Li-ion) battery dynamics in which direct continuous-time (CT) model identification
methods are used to estimate the battery model parameters. In particular, the CT least squares-
based state-variable filter (lssvf) identification method is extended to be used in fractional
differential model identification of a battery system. The model performance and validation
accuracy are evaluated on the basis of experimental data of a Li-ion polymer (LiPo) battery.
It is shown how the proposed lssvf identification method can accurately capture the fractional
order battery dynamics and exhibit better performance than integer order differential models.
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1. INTRODUCTION

Lithium-ion (Li-ion) batteries are currently one of the
leading candidates for energy storage and deliver applica-
tions in electric vehicles (EVs) and hybrid electric vehicles
(HEVs), because they provide high energy density, exhibit
very low memory effect, and have typically long cycle-life
(Armand and Tarascon, 2008). In order to maintain bat-
tery performance and ensure battery operation, a battery
management system (BMS) is used to monitor the status
of the battery, including state of charge (SOC), state of
health (SOH), and state of power (SOP) (Fang et al.,
2014; Xia and Mi, 2016). High overcharge/disovercharge
rates can damage Li-ion batteries and signal processing
and diagonistic algorithms are needed in a BMS to extent
longevity, calculate additional maintenance parameters,
and control the operating environment of the battery.

A detailed model for Li-ion batteries can be used in a
BMS to predict internal battery temperature, the SOC
within the individual electrodes, overpotential, and cur-
rent distribution across the electrodes. Among different
model approaches, a BMS may use an electrochemical
model that is usually more accurate to capture battery
dynamics than an equivalent circuit model (ECM). Al-
ternatively, the battery model may be based simply on
the input/output behavior describing power storage and
delivery dynamics (Jiang et al., 2016; Zhao and de Calla-
fon, 2016). An electrochemical model has the advantage of
predicting various physical information in a Li-ion battery.
However, the partial differential equations (PDEs) used in
an electrochemical model may require extensive numer-

ical computations to compute a simulation. Although a
single particle model (SPM) can be used to simplify the
ECM, parameter estimation and model validation are still
a challenging task when the only battery states can be
measured by voltage, current, temperature, and electrolyte
ion concentration information (Guo et al., 2011).

Another way to include model-based signal processing
in a BMS is the use of an ECM that is composed of
equivalent potential, internal resistance, and effective ca-
pacitance (Xia et al., 2016). Although this model has a
simplified structure and less parameters to be estimated,
it is typically unable to match electrochemical impedance
spectroscopy (EIS) experimental data due to its linearity
and finite order model structure (He et al., 2011). An
alternative approach to a linear time varying ECM is to
use fractional derivatives instead of integer derivatives to
describe infinite dimensional battery dynamics behavior,
and balance the model accuracy and complexity (Zou
et al., 2016). Fractional models are an important tool in
modeling thermal diffusion and electrochemical diffusion
of viscoelastic materials (Malti, 2006). Unfortunately, re-
cently developed parameter estimation methods in frac-
tional derivative models for battery systems may be com-
putationally intensive due to integration and convolution
computations (Eckert et al., 2015).

This paper builds on the ideas of fractional model iden-
tification of battery systems presented in Eckert et al.
(2015), but the problem is formulated as a continuous-
time (CT) system identification approach (Garnier and
Wang, 2008). The direct identification of CT models is
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shown to work well on stiff systems that have a large range
in dynamic behavior as typically seen in a Li-ion battery
system. In CT identification, state-variable filters (SVFs)
are utilized to filter (smoothen) fractional derivative terms
of input/output signals for the estimation of parameters.
After obtaining fractional derivative filtered input/output
signals, a least squares-based state-variable filter (lssvf ) of
Malti et al. (2008) is used to estimate the parameters of
the proposed fractional differential battery model.

2. FRACTIONAL DIFFERENTIAL SYSTEMS

2.1 General linear fractional differential system

A fractional differential equation is usually used to repre-
sent a linear fractional model of the format

y(t) + a1D
α1y(t) + ...+ anD

αny(t)
= b0D

β0u(t) + b1D
β1u(t) + ...+ bmDβmu(t)

(1)

where (aj , bi) ∈ R2, differentiation orders α1 < α2 < ... <
αn, β0 < β1 < ... < βm, and αi, βi ∈ R+. The α-th
fractional order fundamental operator is defined according
to Petr (2011) via Dα = ( d

dt )
α, ∀α ∈ R+ where the α-th

order uninitialized fractional derivative of a function f(t)
is given by

Dαf(t) = (
d

dt
)�α�

1

Γ(�α� − α)

t∫

0

f(τ)

(t− τ)α−�α� dτ, (2)

where Eulers gamma function Γ(γ) =
∫∞
0

tγ−1e−t dt.It is
worth noting that ceiling �·� and floor �·� functions are
equal to the largest previous or the smallest following
integer, respectively.

The Laplace transform of the derivative-integral (2) has
the form (Podlubny, 1997):

L{Dαf(t)} = sαF (s), if f(t) = 0 ∀t ≤ 0 (3)

allowing the fractional differential equation (1) to be
written in a transfer function format

G(s) =
b0s

β0 + b1s
β1 + · · ·+ bmsβm

1 + a1sα1 + · · ·+ ansαn
(4)

where input u(t) and output y(t) signals are assumed to be
equal to 0 when t < 0. The transfer function representation
(4) is adopted for a battery model in this paper.

2.2 Numerical Computation of Fractional Derivatives

In order to compute the system response of an input signal
in CT fractional system, the revised Grünwald-Letnikov
definition

Dαf(t) = lim
�x→0

1

�xα

[ t−a
�x ]∑
j=0

(−1)j
(
α
j

)
f(t− j � x) (5)

is used here to derive α-th fractional derivative of a
function f(t). The numerical solution to the above re-
vised Grünwald-Letnikov of a general fractional differential
equation in (1) can be obtained by a recursive method

y(t) =
1∑n

i=0
ai

�xαi


u(t)−

n∑
i=0

ai
�xαi

[ t−a
� ]∑

j=1

µ
(αj)
j yt−j�x


 (6)

as done in Tepljakov et al. (2011); Chen et al. (2009),
where �x is computation step size. In the above equation

(6), the µ
(·)
j can be computed recursively via µα

0 = 1

and µα
j = (1 − α+1

j )µα
j−1, j = 1, 2, . . . to get numerical

fractional derivatives of input/output signals. Finally, û(t)
can be numerically computed by using revised Grünwald-

Letnikov (5) to replace the (−1)α
(
α
j

)
= µα

j term in the

computation. As a final note it should be mentioned that
this recursive method is actually a fixed-step computation
method. As a result, it is necessary to take care of step-size
�x in order to increase the computation accuracy.

2.3 Fractional battery model

In this paper, the fractional battery model of Eckert
et al. (2015) with a single ”RQ element” is used. In
particular, the fractional battery model is composed by an
inner resistance R0, a differential capacity C0, and a RQ
element. The model can be described by first (fractional)
order transfer function

u0 =
b3s

α+1 + b2s+ b1s
α + b0

a0sα+1 + s
i, (7)

where b0 = 1
C0

, b1 = RQ
C0

, b2 = R + R0, b3 = R0RQ, a0 =

RQ, and α ∈ R+. The differential capacity C0 is assumed
to be known and removed, allowing the model to be
reduced via ũt = u0 − uC0

into

b3s
α + b2

a0sα + 1
=

R0RQsα + (R+R0)

RQsα + 1
(8)

where the fractional model order α can be recognized on
the Laplace variable s. This model will be used as a basis
for the parametrization and identification of the battery
model parameters.

3. ALGEBRAIC IDENTIFICATION OF
FRACTIONAL BATTERY MODEL

3.1 Algebraic identification method

The parameters R0, R, α and Q in (8) can be estimated
via the algebraic identification method by the following
approach (Eckert et al., 2015). The approach in Eckert
et al. (2015) defines the reparametrization

P (t) ·

[
θ1
θ2
θ3

]
= Q(t), (9)

where the parameters

θ1 = −(R+R0),
θ2 = 2R0 +R,

θ3 =
−R

α
,

(10)

can be computed if the matrix
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P (t) =




Π(t)
t∫

0

Π(t′)dt′

t∫

0

(

t′∫

0

Π(t′′)dt′′)dt′




(11)

is regular, where

Π(t) = [π11(t) π12(t) π13(t)] (12)

where π11(t) and π12(t) are given by

π11(t) =

t∫

0

(i ∗ i)(t′)dt′

π12(t) =

t∫

0

(i ∗ ũt)(t
′)dt′

(13)

and

π13(t) = (−t · i(t)) ∗ ũt(t)− i(t) ∗ (−t · ũt(t)) (14)

Furthermore, the matrix Q(t) in (9) is given by

Q(t) =




q(t)
t∫

0

q(t′)dt′

t∫

0

(

t′∫

0

q(t′′)dt′′)dt′




(15)

with

q(t) =

t∫

0

(ũt ∗ ũt)(t
′)dt′, (16)

where * and
∫

denote the convolution operator and inte-
gration operator, respectively. Thus the parameters R0, R,
α and Q can be estimated by

R0 =
θ2
2

−
√

(θ2)2

4
+ θ1,

R =
√
(θ2)2 + 4θ1,

α =
−
√
(θ2)2 + 4θ1

θ3
,

Q =
s−α(R0i+Ri− ũt)

Rũt −R0Ri
,

(17)

requiring the computation of (fractional) integrals.

3.2 Sensitivity of the fractional derivative

Although the algebraic identification method of Eckert
et al. (2015) provides an elegant way to estimate the
batery model parameters, it is sensitive to the fractional
order used in the model. This can be illustrated with a
numerical simulation that uses a fractional battery model
with the same parameters as in Eckert et al. (2015), where
R0 = 0.6963Ω, R = 0.02868Ω, and Q = 553.7Ω.
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Fig. 1. Estimated parameter R0 with respect to fractional
order α.

A summary of the estimation of battery parameter R0

using a simulation time Tsim = 30s and the sampling rate
ts = 5ms is depicted in Fig. 1. It can be observed that
the estimate of R0 is sensitive to the chosen fractional
order α. Furthermore, an estimation error is also caused
by the computation error of the numerical algorithms (5)
and (6) that is used in the simulation, severely restricting
the performance of the identification method. Therefore, a
more robust identification method is needed and motivated
the proposed continuous-time least squares-based state-
variable filter (lssvf) identification method to be presented
in the following.

4. CONTINUOUS-TIME FRACTIONAL MODEL
SYSTEM IDENTIFICATION

4.1 Direct continuous-time (CT) least squares (LS) method

In setting up the Continuous-time (CT) identification
problem, the input u(t) and output y(t) signals are asso-
ciated with the fractional differential equation (1), where
input/output signals are obtained at regular samples Ts,
2Ts, . . . , NTs from t = 0 to t = T . For this specific case,
an equation error can be formulated as

ε(t) = y(t)− ϕ(t)T θ (18)

where

ϕ(t)T = [Dβ0u(t) Dβ1u(t) ... Dβmu(t),
−Dα1y(t) −Dα2y(t) ...−Dαny(t)]

(19)

and

θT = [b0 b1...bm a1 a2...an] (20)

Minimization of the L2 norm of ε(t)

J =

T∫

0

(ε(t))2dt, (21)

with respect to θ can then be used to formulate a param-

eter estimate θ̂LS as the following expression

θ̂LS =

( T∫

0

ϕ(t)Tϕ(t)dt

)−1 T∫

0

ϕ(t)T y(t)dt (22)

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

409



Download English Version:

https://daneshyari.com/en/article/7115714

Download Persian Version:

https://daneshyari.com/article/7115714

Daneshyari.com

https://daneshyari.com/en/article/7115714
https://daneshyari.com/article/7115714
https://daneshyari.com

