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Abstract: Many real world systems exhibit a quasi linear or weakly nonlinear behavior during
normal operation, and a hard saturation effect for high peaks of the input signal. A typical
example of such systems is the cascaded water-tanks benchmark. This benchmark combines
soft and hard nonlinearities to be identified based on relatively short data records. In this
paper, a methodology to identify an unstructured flexible nonlinear state space model (NLSS)
for the cascaded water-tanks benchmark is proposed. The flexibility of the NLSS model structure
is demonstrated by introducing two different initialisation schemes. Furthermore the strengths
and short-comings of the model structure are discussed with respect to the cascaded water-
benchmark identification problem.
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1. INTRODUCTION

There is an evident need of good system modelling tech-
niques in many branches of engineering. Mathematical
(linear or nonlinear) models are needed in various ap-
plications, for example, to understand and analyse the
system under test, to simulate or predict the behavior
of the system during the design phase or to design and
implement a controller. System identification provides us
with a variety of methods to derive accurate mathematical
descriptions of the underlying system, based on a set of
input/output measurements.

1.1 Nonlinear System Identification

The recent years have witnessed the shift from linear sys-
tem identification (Ljung (1998); Pintelon and Schoukens
(2012); Van Overschee and De Moor (2012)) to nonlin-
ear system identification methods, driven by the need to
capture the inherent nonlinear effects of real-life systems.
Nonlinear system identification constantly faces the chal-
lenge of deciding between the flexibility of the fitted model
and its parsimony. Flexibility refers to the ability of the
model to capture complex nonlinearities, while parsimony
is its ability to possess a low number of parameters.
A general framework for nonlinear system identification
does not exist (Giannakis and Serpedin (2001)), however,
modeling nonlinear systems is covered in different fields
like statistical learning and machine learning (Suykens
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et al. (2002); Rasmussen and Williams (2006); Hastie et al.
(2009); Suykens et al. (2012)), but most of these meth-
ods are typically not specifically developed to deal with
dynamics and often have limited means for dealing with
noise. Within the system identification community two
major approaches to nonlinear system identification can
be distinguished: black-box nonlinear system identification
(Sjöberg et al. (1995), Billings (2013)) and block-oriented
system identification (Giri and Bai (2010), Mzyk (2013)).

State-space models are general representations that al-
low one to describe a variety of systems. In particular,
nonlinear state-space modeling represents a promising,
and at the same time challenging, class of techniques.
In this paper, we focus mainly on black-box identifica-
tion of nonlinear state space model (NLSS) structures
(Paduart et al. (2010); Schön et al. (2011)). The focus of
this paper is the application of two initialization schemes
for the identification of nonlinear state-space models for
the cascaded water-tanks benchmark problem (Schoukens
et al. (2016)) and test their suitability and performance
to capture the dynamical behavior of the cascaded water-
tanks benchmark problem.

This paper is organized as follows: Section 2 introduces
the cascaded water-tanks benchmark and the identification
challenges associated with this benchmark problem briefly.
Section 3 describes the nonlinear modelling approach us-
ing the NLSS model structures used in this paper. The
identification of NLSS model along with two different
initialisation schemes is described in Section 4 and Section
5 respectively. Section 6 gives provides an overview of
the final objective functions, which are minimised using
two different initialisation schemes. Section 7 gives an
introduction to the experimental set-up as well as the
measurement methodology used for the acquisition of the
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signals. Results are presented in Section 8, and finally, the
conclusions are given in Section 9.

2. CASCADED WATER TANKS SYSTEM

In this section, we introduce very briefly the cascaded
water-tanks system benchmark problem and state the
nonlinear identification challenges associated with it.

2.1 System

Fig. 1. The water is pumped from a reservoir in the upper
tank, flows to the lower tank and finally flows back
into the reservoir. The input is the pump voltage, the
output is the water level of the lower tank.

The cascaded tanks system is a liquid level control system
consisting of two tanks with free outlets fed by a pump.
The input signal controls a water pump that pumps
the water from a reservoir (considered here as an ideal
reservoir which is able to provide enough water) into the
upper water tank. The water of the upper water tank flows
through a small opening into the lower water tank, and
finally through a small opening from the lower water tank
back into the reservoir. This process is shown in Figure 1.

The relation between (1) the water flowing from the upper
tank to the lower tank and (2) the water flowing from
the lower tank into the reservoir are weakly nonlinear
functions. However, when the amplitude of the input
signal is too large, an overflow can happen in the upper
tank, and with a delay also in the lower tank. When
the upper tank overflows, a part of the water goes into
the lower tank, the rest flows directly into the reservoir.
This effect is partly stochastic, hence it acts as an input-
dependent process noise source. Fig.2 shows the input-

Fig. 2. Block diagram with respective input (pump actu-
ator) and output (height of the second tank) respec-
tively

output block diagram for the water-tanks system shown
in Fig.1. Without considering the overflow effect, the

following input-output model can be constructed based on
Bernoulli’s principle and conservation of mass:

ẋ1(t) = −k1
√
x1(t) + k4u(t) + w1(t), (1)

ẋ2(t) = k2
√
x1(t)− k3

√
x2(t) + w2(t), (2)

y(t) = x2(t) + e(t) (3)
where u(t) is the input signal, x1(t) and x2(t) are the states
of the system, w1(t), w2(t) and e(t) are the additive noise
sources and k1, k2, k3, and k4 are the constants depending
on the system properties. The stochastic nature of the
overflow can be captured by the process noise w1(t), to
some extent depending upon the input flowrate.

2.2 Identification Challenges

The major nonlinear system identification challenges asso-
ciated with the water-tanks benchmark are listed below:

(1) the hard saturation nonlinearity combined with the
weakly nonlinear behavior of the system in normal
operation,

(2) the overflow from the upper to the lower tank, this
effect also introduces input dependent process noise,

(3) the relatively short estimation data record,
(4) the unknown initial values of the states.

In the next section, we introduce the nonlinear state
space model structure and discuss two different ways to
represent it. Later in the paper, the procedure to identify
these two different nonlinear state space model structures
from input-output measurements of cascaded water-tanks
benchmark will be discussed.

3. NONLINEAR STATE SPACE

Physical interpretation of the system under test is not
always required, for instance in control or prediction prob-
lems. In that case, the user prefers a flexible and an easy-
to-initialize black-box model. Moreover, the model should
preferably be able to describe Multiple-Input Multiple-
Output (MIMO) systems in a compact way. A good base
for such a model is a state space representation of the sys-
tem under consideration. A general nth

x order discrete-time
state space model is described by the following equations:

x(t+ 1) = f(x(t), u(t))

y(t) = g(x(t), u(t)) (4)
with u(t) ∈ Rnu the vector containing the nu inputs
at time t, and y(t) ∈ Rny the vector containing the
ny outputs. The state vector x(t) ∈ Rnx represents
the memory of the dynamical system. The theoretical
analysis for studying the equivalence between the physical
continuous time system and this model structure is out of
the scope of this paper.

3.1 Polynomial Nonlinear State-Space Models

A nonlinear state space model (where f(·), g(·) are ap-
proximated by polynomial basis functions) is termed as a
Polynomial Nonlinear State-Space (PNLSS). The PNLSS
model structure (Paduart et al. (2010)) is described as:

x(t+ 1) = Ax(t) +Bu(t) + Eζ(t)

y(t) = Cx(t) +Du(t) + Fη(t) + e(t) (5)
The coefficients of the linear terms in x(t) ∈ Rnx and
u(t) ∈ Rnu are given by the matrices A ∈ Rnx×nx and
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and at the same time challenging, class of techniques.
In this paper, we focus mainly on black-box identifica-
tion of nonlinear state space model (NLSS) structures
(Paduart et al. (2010); Schön et al. (2011)). The focus of
this paper is the application of two initialization schemes
for the identification of nonlinear state-space models for
the cascaded water-tanks benchmark problem (Schoukens
et al. (2016)) and test their suitability and performance
to capture the dynamical behavior of the cascaded water-
tanks benchmark problem.

This paper is organized as follows: Section 2 introduces
the cascaded water-tanks benchmark and the identification
challenges associated with this benchmark problem briefly.
Section 3 describes the nonlinear modelling approach us-
ing the NLSS model structures used in this paper. The
identification of NLSS model along with two different
initialisation schemes is described in Section 4 and Section
5 respectively. Section 6 gives provides an overview of
the final objective functions, which are minimised using
two different initialisation schemes. Section 7 gives an
introduction to the experimental set-up as well as the
measurement methodology used for the acquisition of the
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1. INTRODUCTION

There is an evident need of good system modelling tech-
niques in many branches of engineering. Mathematical
(linear or nonlinear) models are needed in various ap-
plications, for example, to understand and analyse the
system under test, to simulate or predict the behavior
of the system during the design phase or to design and
implement a controller. System identification provides us
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descriptions of the underlying system, based on a set of
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model to capture complex nonlinearities, while parsimony
is its ability to possess a low number of parameters.
A general framework for nonlinear system identification
does not exist (Giannakis and Serpedin (2001)), however,
modeling nonlinear systems is covered in different fields
like statistical learning and machine learning (Suykens
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signals. Results are presented in Section 8, and finally, the
conclusions are given in Section 9.

2. CASCADED WATER TANKS SYSTEM

In this section, we introduce very briefly the cascaded
water-tanks system benchmark problem and state the
nonlinear identification challenges associated with it.

2.1 System

Fig. 1. The water is pumped from a reservoir in the upper
tank, flows to the lower tank and finally flows back
into the reservoir. The input is the pump voltage, the
output is the water level of the lower tank.

The cascaded tanks system is a liquid level control system
consisting of two tanks with free outlets fed by a pump.
The input signal controls a water pump that pumps
the water from a reservoir (considered here as an ideal
reservoir which is able to provide enough water) into the
upper water tank. The water of the upper water tank flows
through a small opening into the lower water tank, and
finally through a small opening from the lower water tank
back into the reservoir. This process is shown in Figure 1.

The relation between (1) the water flowing from the upper
tank to the lower tank and (2) the water flowing from
the lower tank into the reservoir are weakly nonlinear
functions. However, when the amplitude of the input
signal is too large, an overflow can happen in the upper
tank, and with a delay also in the lower tank. When
the upper tank overflows, a part of the water goes into
the lower tank, the rest flows directly into the reservoir.
This effect is partly stochastic, hence it acts as an input-
dependent process noise source. Fig.2 shows the input-

Fig. 2. Block diagram with respective input (pump actu-
ator) and output (height of the second tank) respec-
tively

output block diagram for the water-tanks system shown
in Fig.1. Without considering the overflow effect, the

following input-output model can be constructed based on
Bernoulli’s principle and conservation of mass:

ẋ1(t) = −k1
√

x1(t) + k4u(t) + w1(t), (1)

ẋ2(t) = k2
√

x1(t)− k3
√

x2(t) + w2(t), (2)
y(t) = x2(t) + e(t) (3)

where u(t) is the input signal, x1(t) and x2(t) are the states
of the system, w1(t), w2(t) and e(t) are the additive noise
sources and k1, k2, k3, and k4 are the constants depending
on the system properties. The stochastic nature of the
overflow can be captured by the process noise w1(t), to
some extent depending upon the input flowrate.

2.2 Identification Challenges

The major nonlinear system identification challenges asso-
ciated with the water-tanks benchmark are listed below:

(1) the hard saturation nonlinearity combined with the
weakly nonlinear behavior of the system in normal
operation,

(2) the overflow from the upper to the lower tank, this
effect also introduces input dependent process noise,

(3) the relatively short estimation data record,
(4) the unknown initial values of the states.

In the next section, we introduce the nonlinear state
space model structure and discuss two different ways to
represent it. Later in the paper, the procedure to identify
these two different nonlinear state space model structures
from input-output measurements of cascaded water-tanks
benchmark will be discussed.

3. NONLINEAR STATE SPACE

Physical interpretation of the system under test is not
always required, for instance in control or prediction prob-
lems. In that case, the user prefers a flexible and an easy-
to-initialize black-box model. Moreover, the model should
preferably be able to describe Multiple-Input Multiple-
Output (MIMO) systems in a compact way. A good base
for such a model is a state space representation of the sys-
tem under consideration. A general nth

x order discrete-time
state space model is described by the following equations:

x(t+ 1) = f(x(t), u(t))

y(t) = g(x(t), u(t)) (4)
with u(t) ∈ Rnu the vector containing the nu inputs
at time t, and y(t) ∈ Rny the vector containing the
ny outputs. The state vector x(t) ∈ Rnx represents
the memory of the dynamical system. The theoretical
analysis for studying the equivalence between the physical
continuous time system and this model structure is out of
the scope of this paper.

3.1 Polynomial Nonlinear State-Space Models

A nonlinear state space model (where f(·), g(·) are ap-
proximated by polynomial basis functions) is termed as a
Polynomial Nonlinear State-Space (PNLSS). The PNLSS
model structure (Paduart et al. (2010)) is described as:

x(t+ 1) = Ax(t) +Bu(t) + Eζ(t)

y(t) = Cx(t) +Du(t) + Fη(t) + e(t) (5)
The coefficients of the linear terms in x(t) ∈ Rnx and
u(t) ∈ Rnu are given by the matrices A ∈ Rnx×nx and
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