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leading to the optimal solution of the original system. Numerical results are presented.
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1. INTRODUCTION

Guidance of autonomous launch vehicles towards ren-
dezvous points is a complex task often considered in missile
applications, mainly for interception of targets. It repre-
sents an optimal control problem, whose aim consists in
finding a control law enabling the vehicle to join a final
point of the 3D space considering prescribed constraints
as well as performance criteria. The rendezvous point
may be a static point as well as a moving point if, for
example, the task consists in intercepting a maneuvering
target. This requires not only high numerical precision of
concerned algorithms but also a real-time processing of
optimal trajectories.

The most common approach to solve this kind of task
resides on analytical guidance laws. They correct errors
coming from perturbations and misreading of the system.
However, the trajectories induced by guidance laws are not
optimal because of some approximations made.

Ensuring the optimality of trajectories can be achieved
exploiting direct methods. These techniques consist in dis-
cretizing each component of the optimal control problem
(the state, the control, etc.) to reduce the whole math-
ematical representation to a nonlinear constrained opti-
mization problem. Since they are quite robust, they are
widely used [Hargraves and Paris, 1987], [Ross et al., 2003].
However, these methods are computationally demanding
and can often be used offline uniquely.

In order to manage efficiently real-time processing of op-
timal control sequences for launch vehicle systems one
may consider indirect methods. These use a mathematical
study of the system (exploiting the Pontryagin Maxi-
mum Principle) to determine some necessary conditions

of optimality. Indirect methods converge much faster than
direct methods with a better precision. Since the problem
is equivalent to the research of zeros of a function, the
main difficulty remains their initialization. For example, in
[Pan and Lu, 2010] the initialization problem is bypassed
using finite differences algorithms and multiple-shooting
methods respectively. However, these approaches remain
computationally demanding and not easily applicable in
view of real-time processing.

In this paper, we propose to solve endo-atmospheric launch
vehicle optimal control problems using indirect methods
managing the issue coming from the initialization by
combining an analytical guidance law and a continuation
method. Continuation procedures have shown to be re-
liable and robust for problems like atmospheric reentry
and coplanar orbit transfer [Cerf et al., 2012], [Trélat,
2012]. This combination allows to preserve precision and
fast numerical computations. The proposed approach is
resumed in two main steps. We first simplify the physical
dynamics to obtain a new analytical guidance law which
is used as initial guess for a shooting method. Then, a
continuation procedure makes the problem converge to the
complete dynamics leading to the optimal solution of the
original system.

The paper is structured as follows. Section 2 introduces
the dynamics of a general endo-atmospheric launch vehicle
system, the optimal control formulation and the related
numerical approach. Section 3 is devoted to the construc-
tion of a simplified dynamics able to initialize successfully
a shooting method. In Section 4 the continuation method
that recovers the original dynamics is presented with some
numerical tests. Finally, Section 5 contains conclusions and
perspectives.
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2. DYNAMICS, OPTIMAL CONTROL PROBLEM
AND NUMERICAL METHOD

2.1 Physical Model

Let (I,J,K) be an inertial frame centered at the cen-
ter of the planet O, (eL, el, er) be the NED frame
and (i, j,k) be the velocity frame. The endo-atmospheric
launch vehicle system is modeled as an axisymmet-
ric thrust propelled rigid body of mass m. The co-
ordinates (r, l, L, v, γ, χ) ∈ R6 (L is the latitude,
l is the longitude, γ is the path angle and χ is
the azimuth angle) are used to represent the position
ξ = (r cos(L) cos(l), r cos(L) sin(l), r sin(L)) of the cen-
ter of mass G of the vehicle and its velocity v =
v cos(γ) cos(χ)eL + v cos(γ) sin(χ)el − v sin(γ)er.

Neglecting the wind velocity, the Coriolis and the cen-
tripetal force (this is legitimate because of the short length
of the considered trajectories), the dynamics takes the
following form

ṙ = v sin(γ) , L̇ =
v

r
cos(γ) cos(χ) , l̇ =

v

r

cos(γ) sin(χ)

cos(L)

v̇ =
fT

m
cos(α)− (d+ ηcmu2)v2 − g sin(γ) , ṁ = −q

γ̇ =
fT

mv
sin(α) cos(β) + vcmu cos(β) +

(
v

r
−

g

v

)
cos(γ) (1)

χ̇ =
fT

mv

sin(α)

cos(γ)
sin(β) +

vcm

cos(γ)
u sin(β) +

v

r
cos(γ) sin(χ) tan(L)

where g is the modulus of the gravity, η is an aerodynamic
efficiency factor, α = αmaxu is the angle of attack while
β is the angle of bank, u stands for the normalized lift
coefficient while q = q(t) is the mass flow and fT = fT (t)
represents the modulus of the thrust depending on q(t).

Based on a standard model of flight dynamics [Pucci et al.,
2015], [Pepy and Hérissé, 2014], coefficients d and cm
are approximated by d = d(r) = 1

2mρSCD0 and

cm = cm(r) = 1
2mρSCLmax

where S is the reference area,
CLmax

is the maximal value of the lift coefficient and CD0
is

the drag coefficient for α = 0, which is considered constant;
finally, ρ is the air density for which an exponential model
ρ = ρ(r) = ρ0 exp(−(r − rT )/hr) is considered, where
hr is a reference altitude. Since q(t) is a predefined function
of time, in this paper controls are only u and β.

2.2 Optimal Control Problem and Maximum Principle

Consider now the Optimal Control Problem (OCP)

min

∫ tf

0

f0(t,x(t),u(t)) dt

ẋ(t) = f(t,x(t),u(t)) (2)

x(0) = x0 ∈ M0 , x(tf ) = xtf ∈ Mf

where x(t) = (r, L, l, v, γ, χ)(t) ∈ R6, u(t) = (u, β)(t) ∈
R2, f is the mapping defined by dynamics (1), M0, Mf are
smooth submanifolds of R6 and the transfer time tf is not
fixed. Finally,

f0 = σu2 −
(
fT
m

cos(α)− (d+ ηcmu2)v2 − g sin(γ)

)
(3)

where σ ≥ 0 is constant. By definition, u2 takes its values
in [0, 1]. However, we do not consider any boundaries on u
preferring to penalize it, using σ, ηcmv2 within the cost.

The Pontryagin Maximum Principle (PMP) [Boltyanskiy
et al., 1962] states that, if u is optimal with response
defined on [0, tf ], and shortly denoted x(t), then there
exists p0 ≤ 0 and p ∈ AC([0, tf ],R6) such that

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, H(t,x,p,u) = max

v∈U
H(t,x,p,v)

max
v∈U

H(tf ,x(tf ),p(tf ),v) = 0 (4)

a.e. on [0, tf ], whereH = 〈p, f(t,x,u)〉+p0f0(t,x,u) is the
Hamiltonian and p satisfies the transversality conditions

p(0) ⊥ Tx0
M0 , p(tf ) ⊥ Txtf

Mf (5)

Treating (OCP) by indirect methods consists in solving

ẋ(t) = f(t,x(t),p(t)) , x(0) = x0 , x(tf ) = xf (6)

ṗ(t) =−∂H

∂x
(t,x(t),p(t)) , p(0) = p0

with an appropriate value for p0.

2.3 Shooting and Continuation Method

It is known [Trélat, 2008] that finding a solution of (6) can
be reduced to solve G(p0, tf ) = 0 , G : Rn+1 −→ Rn+1 (G
is called shooting function) using Newton-type methods.
This is the content of the well known shooting method in
optimal control [Trélat, 2008], [Stoer and Bulirsch, 2013].
Its advantage is its extremely good numerical accuracy,
relevant for aerospace applications [Trélat, 2012]. Since it
relies on the Newton method, it inherits of the very quick
convergence properties of the Newton method. Its main
drawback is that it may be difficult to initialize.

To overcome this difficulty, one can entrust with the ro-
bustness of the continuation method. It consists in deform-
ing the problem into a simpler one that we are able to solve
and then in solving a series of shooting problems, step
by step by parameter deformation, to recover the origi-
nal problem [Allgower and Georg, 2003]. This approach
increases the efficiency of the shooting method because
it allows to relax its initialization. The continuation pa-
rameter λ may be a physical parameter (or several) of the
problem, or an artificial one. The path consists of a convex
combination of the simpler problem and of the original one.

The main algorithm proposed consists then in finding
a solution of some simplification of (OCP) first and,
from this, solving by continuation the original formulation
(OCP).

3. NEW GUIDANCE LAW AS A GOOD ESTIMATE
FOR THE CONTINUATION METHOD

Continuation methods allow us to solve iteratively (OCP)
once the solution of some (usually) simpler optimal control
problem is known. Here, we introduce and treat an efficient
simpler problem coming from a modification of (1).

This modified version of (OCP) is designed with the hope
that, on one hand, the shooting method can be easily
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However, these methods are computationally demanding
and can often be used offline uniquely.

In order to manage efficiently real-time processing of op-
timal control sequences for launch vehicle systems one
may consider indirect methods. These use a mathematical
study of the system (exploiting the Pontryagin Maxi-
mum Principle) to determine some necessary conditions

of optimality. Indirect methods converge much faster than
direct methods with a better precision. Since the problem
is equivalent to the research of zeros of a function, the
main difficulty remains their initialization. For example, in
[Pan and Lu, 2010] the initialization problem is bypassed
using finite differences algorithms and multiple-shooting
methods respectively. However, these approaches remain
computationally demanding and not easily applicable in
view of real-time processing.

In this paper, we propose to solve endo-atmospheric launch
vehicle optimal control problems using indirect methods
managing the issue coming from the initialization by
combining an analytical guidance law and a continuation
method. Continuation procedures have shown to be re-
liable and robust for problems like atmospheric reentry
and coplanar orbit transfer [Cerf et al., 2012], [Trélat,
2012]. This combination allows to preserve precision and
fast numerical computations. The proposed approach is
resumed in two main steps. We first simplify the physical
dynamics to obtain a new analytical guidance law which
is used as initial guess for a shooting method. Then, a
continuation procedure makes the problem converge to the
complete dynamics leading to the optimal solution of the
original system.

The paper is structured as follows. Section 2 introduces
the dynamics of a general endo-atmospheric launch vehicle
system, the optimal control formulation and the related
numerical approach. Section 3 is devoted to the construc-
tion of a simplified dynamics able to initialize successfully
a shooting method. In Section 4 the continuation method
that recovers the original dynamics is presented with some
numerical tests. Finally, Section 5 contains conclusions and
perspectives.
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target. This requires not only high numerical precision of
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The most common approach to solve this kind of task
resides on analytical guidance laws. They correct errors
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The most common approach to solve this kind of task
resides on analytical guidance laws. They correct errors
coming from perturbations and misreading of the system.
However, the trajectories induced by guidance laws are not
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(the state, the control, etc.) to reduce the whole math-
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mization problem. Since they are quite robust, they are
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However, these methods are computationally demanding
and can often be used offline uniquely.
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main difficulty remains their initialization. For example, in
[Pan and Lu, 2010] the initialization problem is bypassed
using finite differences algorithms and multiple-shooting
methods respectively. However, these approaches remain
computationally demanding and not easily applicable in
view of real-time processing.

In this paper, we propose to solve endo-atmospheric launch
vehicle optimal control problems using indirect methods
managing the issue coming from the initialization by
combining an analytical guidance law and a continuation
method. Continuation procedures have shown to be re-
liable and robust for problems like atmospheric reentry
and coplanar orbit transfer [Cerf et al., 2012], [Trélat,
2012]. This combination allows to preserve precision and
fast numerical computations. The proposed approach is
resumed in two main steps. We first simplify the physical
dynamics to obtain a new analytical guidance law which
is used as initial guess for a shooting method. Then, a
continuation procedure makes the problem converge to the
complete dynamics leading to the optimal solution of the
original system.

The paper is structured as follows. Section 2 introduces
the dynamics of a general endo-atmospheric launch vehicle
system, the optimal control formulation and the related
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tion of a simplified dynamics able to initialize successfully
a shooting method. In Section 4 the continuation method
that recovers the original dynamics is presented with some
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2. DYNAMICS, OPTIMAL CONTROL PROBLEM
AND NUMERICAL METHOD

2.1 Physical Model

Let (I,J,K) be an inertial frame centered at the cen-
ter of the planet O, (eL, el, er) be the NED frame
and (i, j,k) be the velocity frame. The endo-atmospheric
launch vehicle system is modeled as an axisymmet-
ric thrust propelled rigid body of mass m. The co-
ordinates (r, l, L, v, γ, χ) ∈ R6 (L is the latitude,
l is the longitude, γ is the path angle and χ is
the azimuth angle) are used to represent the position
ξ = (r cos(L) cos(l), r cos(L) sin(l), r sin(L)) of the cen-
ter of mass G of the vehicle and its velocity v =
v cos(γ) cos(χ)eL + v cos(γ) sin(χ)el − v sin(γ)er.

Neglecting the wind velocity, the Coriolis and the cen-
tripetal force (this is legitimate because of the short length
of the considered trajectories), the dynamics takes the
following form

ṙ = v sin(γ) , L̇ =
v

r
cos(γ) cos(χ) , l̇ =

v

r

cos(γ) sin(χ)

cos(L)

v̇ =
fT

m
cos(α)− (d+ ηcmu2)v2 − g sin(γ) , ṁ = −q

γ̇ =
fT

mv
sin(α) cos(β) + vcmu cos(β) +

(
v

r
−

g

v

)
cos(γ) (1)

χ̇ =
fT

mv

sin(α)

cos(γ)
sin(β) +

vcm

cos(γ)
u sin(β) +

v

r
cos(γ) sin(χ) tan(L)

where g is the modulus of the gravity, η is an aerodynamic
efficiency factor, α = αmaxu is the angle of attack while
β is the angle of bank, u stands for the normalized lift
coefficient while q = q(t) is the mass flow and fT = fT (t)
represents the modulus of the thrust depending on q(t).

Based on a standard model of flight dynamics [Pucci et al.,
2015], [Pepy and Hérissé, 2014], coefficients d and cm
are approximated by d = d(r) = 1

2mρSCD0 and

cm = cm(r) = 1
2mρSCLmax

where S is the reference area,
CLmax

is the maximal value of the lift coefficient and CD0
is

the drag coefficient for α = 0, which is considered constant;
finally, ρ is the air density for which an exponential model
ρ = ρ(r) = ρ0 exp(−(r − rT )/hr) is considered, where
hr is a reference altitude. Since q(t) is a predefined function
of time, in this paper controls are only u and β.

2.2 Optimal Control Problem and Maximum Principle

Consider now the Optimal Control Problem (OCP)

min

∫ tf

0

f0(t,x(t),u(t)) dt

ẋ(t) = f(t,x(t),u(t)) (2)

x(0) = x0 ∈ M0 , x(tf ) = xtf ∈ Mf

where x(t) = (r, L, l, v, γ, χ)(t) ∈ R6, u(t) = (u, β)(t) ∈
R2, f is the mapping defined by dynamics (1), M0, Mf are
smooth submanifolds of R6 and the transfer time tf is not
fixed. Finally,

f0 = σu2 −
(
fT
m

cos(α)− (d+ ηcmu2)v2 − g sin(γ)

)
(3)

where σ ≥ 0 is constant. By definition, u2 takes its values
in [0, 1]. However, we do not consider any boundaries on u
preferring to penalize it, using σ, ηcmv2 within the cost.

The Pontryagin Maximum Principle (PMP) [Boltyanskiy
et al., 1962] states that, if u is optimal with response
defined on [0, tf ], and shortly denoted x(t), then there
exists p0 ≤ 0 and p ∈ AC([0, tf ],R6) such that

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, H(t,x,p,u) = max

v∈U
H(t,x,p,v)

max
v∈U

H(tf ,x(tf ),p(tf ),v) = 0 (4)

a.e. on [0, tf ], whereH = 〈p, f(t,x,u)〉+p0f0(t,x,u) is the
Hamiltonian and p satisfies the transversality conditions

p(0) ⊥ Tx0
M0 , p(tf ) ⊥ Txtf

Mf (5)

Treating (OCP) by indirect methods consists in solving

ẋ(t) = f(t,x(t),p(t)) , x(0) = x0 , x(tf ) = xf (6)

ṗ(t) =−∂H

∂x
(t,x(t),p(t)) , p(0) = p0

with an appropriate value for p0.

2.3 Shooting and Continuation Method

It is known [Trélat, 2008] that finding a solution of (6) can
be reduced to solve G(p0, tf ) = 0 , G : Rn+1 −→ Rn+1 (G
is called shooting function) using Newton-type methods.
This is the content of the well known shooting method in
optimal control [Trélat, 2008], [Stoer and Bulirsch, 2013].
Its advantage is its extremely good numerical accuracy,
relevant for aerospace applications [Trélat, 2012]. Since it
relies on the Newton method, it inherits of the very quick
convergence properties of the Newton method. Its main
drawback is that it may be difficult to initialize.

To overcome this difficulty, one can entrust with the ro-
bustness of the continuation method. It consists in deform-
ing the problem into a simpler one that we are able to solve
and then in solving a series of shooting problems, step
by step by parameter deformation, to recover the origi-
nal problem [Allgower and Georg, 2003]. This approach
increases the efficiency of the shooting method because
it allows to relax its initialization. The continuation pa-
rameter λ may be a physical parameter (or several) of the
problem, or an artificial one. The path consists of a convex
combination of the simpler problem and of the original one.

The main algorithm proposed consists then in finding
a solution of some simplification of (OCP) first and,
from this, solving by continuation the original formulation
(OCP).

3. NEW GUIDANCE LAW AS A GOOD ESTIMATE
FOR THE CONTINUATION METHOD

Continuation methods allow us to solve iteratively (OCP)
once the solution of some (usually) simpler optimal control
problem is known. Here, we introduce and treat an efficient
simpler problem coming from a modification of (1).

This modified version of (OCP) is designed with the hope
that, on one hand, the shooting method can be easily
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