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Abstract We study the optimal control problem where the cost functional to be minimized
represents the so-called time of crisis, i.e. the time spent by a trajectory solution of a control
system outside a given set K. Such a problematic finds applications in population dynamics,
such as in prey-predator models, which require to find a control strategy that may leave and
enter the crisis domain K a number of time that increases with the time interval. One important
feature of the time crisis function is that it can be expressed using the characteristic function
of K that is discontinuous preventing the use of the standard Maximum Principle. We provide
an approximation scheme of the problem based on the Moreau-Yosida approximation of the
indicator function of K and prove the convergence of an optimal sequence for the approximated
problem to an optimal solution of the original problem when the regularization parameter goes
to zero. We illustrate this approach on a simple example and then on the Lotka-Volterra prey-
predator model.
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1. THE MINIMAL TIME CRISIS PROBLEM

We consider a controlled dynamics in X ⊂ Rn

ẋ(t) = f(x(t), u(t)) a.e. t ∈ [0, T ], (1)

a set of admissible controls

U := {u : [0, T ] → U ; u meas.},
where U is a compact convex set in Rm. Let K ⊂ X be
a closed set with non empty interior. The system is said
to be in a crisis when x(t) does not belong to the set
K. We shall also consider the usual hypotheses, that we
recall later, which guarantee the following assumption to
be fulfilled.

Assumption 1. Given t0 ∈ (−∞, T ], x0 ∈ X and u(·) ∈
U , we denote by xu(·) the unique absolutely continuous
solution of (1) such that x(t0) = x0 and defined over
[t0, T ].

We recall the following definitions from the Viability
theory [1].
a) Viability kernel:

V iab(K) := {x0 ∈ K ; ∃u ∈ U , xu(t) ∈ K, ∀t ≥ 0}
b) Finite horizon viability kernel:

V iab[0,T ](K) := {x0 ∈ K ; ∃u ∈ U , xu(t) ∈ K, ∀t ∈ [0, T ]}.
When the constraints set K is not viable (i.e. V iab(K) �=
K), and x0 /∈ V iab[0,T ](K) the trajectory spends some
time outside K. One may then consider the minimal time
crisis problem:
� The authors thank the “FMJH Program Gaspard Monge in opti-
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and the Matham-SUD project SOCDE.

(P) : JT (u) :=

∫ T

t0

1Kc(xu(t)) dt → inf
u∈U

JT (u) (2)

where 1Kc(x) :=

{
0 x ∈ K,
1 x /∈ K.

Remark that trajectories may enter and leave K several
times (possibly periodically). Let us recall some previous
works related to this problem :

1. In [4, 5], linear parabolic equations (related to steel con-
tinuous casting model) are considered with the criterion

sup{t ;xu(t) ∈ K} − inf{t ; xu(t) /∈ K}
A regularization method is proposed but considering only
one crossing time from K to Kc.

2. In [8], the minimal time crisis problem is considered over
an infinite horizon, and the value function is characterized
as the smallest positive lower semi-continuous viscosity
super-solution of

H(x,∇V (x)) = 0, x ∈ X,
V (x) = 0, x ∈ ∂V iab(K).

Then, an approximation scheme of the epigraph of the
value function with the discrete viability kernel algorithm
(considering an augmented dynamics) is used. No neces-
sary conditions are given for this problem.

Our objectives in the present work are

(1) to consider finite horizon,
(2) to do not fix any a priori numbers of entry and exit

times, and to provide necessary optimal conditions,
(3) to setup a numerical scheme that could be used to ap-

proximate optimal trajectories on concrete problems.
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The paper is organized as follows. In the second section,
we recall the existence of an optimal control for the time
crisis problem and we apply the hybrid maximum principle
provided that an optimal trajectory satisfies a transverse
condition at every crossing time of K. The third section
is devoted to the study of a regularization scheme of
the time crisis problem and to the convergence of an
optimal solution of the regularized problem to a solution
of the time crisis problem. In particular, no transverse
condition is required when studying the approximated
optimal control problem. Finally, we consider in the last
section two examples where the time crisis is of particular
interest. In the first one, we show that a so-called myopic
strategy is optimal : it consists in minimizing the time in
Kc and in maximizing the time in K. In this example, the
viability kernel is empty. The second example is based on
the Lotka-Volterra model and involves a viability kernel.
We first compute this set and provide an optimal synthesis
for the minimum time problem to reach the viability
kernel. Finally, we show that there exist initial conditions
for which the time crisis is strictly less than the minimum
time to reach the viability kernel.

2. EXISTENCE RESULT AND HYBRID MAXIMUM
PRINCIPLE

Let us first state the results about the existence of optimal
solutions, under the following hypotheses.

Hypothesis 2. f , U and K fulfill the following properties:

(1) The set U is a non-empty compact set of Rm.
(2) The dynamics f is continuous w.r.t. (x, u), locally

Lipschitz w.r.t. x and satisfies the linear growth
condition: ∃ c > 0 s.t. ∀ (x, u) ∈ Rn × U , one has:

‖f(x, u)‖ ≤ c(1 + ‖x‖).
(3) For any x ∈ Rn, the set F (x) := {f(x, u) ; u ∈ U} is

a non-empty convex set.
(4) The set K is a compact set in Rn with non-empty

interior.

Proposition 3. For any t0 ∈ (−∞, T ] and x0 ∈ Rn, there
exists an optimal control of problem (P).

Proof. As a sketch of proof, one can consider the extended
set-valued map G from Rn+1 into the subsets of Rn+1 :

G(z) :=

∣∣∣∣∣
f(x, U)× {0} if x ∈ Int(K),
f(x, U)× [0, 1] if x ∈ ∂K,
f(x, U)× {1} if x ∈ Kc,

where z = (x, y), and use classical compactness arguments.

Define now the Hamiltonian associated to the optimal
control problem:

H(x, p, p0, u) = p · f(x, u)− p01Kc(x)

and notice that it is discontinuous w.r.t. to x preventing
the use of the standard Maximum Principle. Instead, one
may consider the Hybrid Maximum Principle (HMP). For
this, we recall the definition of crossing times.

Definition 4. We say that a time tc ∈ [t0, T ] is a regular
crossing time for a given trajectory x(·) if:
(1) The point x(tc) is s.t. x(tc) ∈ ∂K, and there exists

η > 0 such that for any t ∈ [tc−η, tc), resp. t ∈ (tc, tc+
η], one has x(t) ∈ K, resp. x(t) ∈ Kc.

(2) The control u associated to the solution x is left- and
right-continuous at tc.

(3) The trajectory is transverse to K at x(tc), i.e. for
any h� ∈ NK(x(tc)) such that there exists h ∈
TK(x(tc))\RK(x(tc)) with h� · h = 0, then one has:

h� · f(x(tc), u(tc)) �= 0.

Hypothesis 5. An optimal trajectory (x(·), u(·)) has no
(m = 0) or a finite number m ≥ 1 of regular crossing
times {t1, · · · , tm} over [t0, T ].

Proposition 6. Suppose that Hypotheses 2 and 5 are ful-
filled and let Tc := {t1, ..., tm}. Then, one has:

(1) ∃ p0 ≤ 0, p : [t0, T ] → Rn s.t. (p0, p(·)) �= 0 and

ṗ(t) = −∂xH(x(t), p(t), p0, u(t)) a.e. t /∈ Tc.
(2) u(t) ∈ argmaxv∈U H(x(t), p(t), p0, v) a.e. t ∈ [t0, T ]
(3) Transversality condition : p(T ) = 0.
(4) The Hamiltonian is constant along the trajectory.
(5) At any crossing time tc, we have :

p(t+c )− p(t−c ) ∈ NK(x(tc)).

Moreover ∃ h ∈ NK(x(tc)) with ‖h‖ = 1 s.t. :

p(t+c ) = p(t−c )+
p(t−c ) · (f(x(tc), u(t−c ))− f(x(tc), u(t

+
c ))) + σp0

h.f(x(tc), u(t
+
c ))

h

where σ = −1 (inner) or 1 (outer).

Proof. It is based on application of [9, 10, 7].

Recall that a statement of the HMP without the Hypoth-
esis 5 is an open problem.

Another approach to encounter the difficulty due to the
discontinuity of the Hamiltonian is to consider a regular-
ization of the criterion.

3. REGULARIZATION OF THE PROBLEM AND
CONVERGENCE RESULTS

In this Section we shall assume that K is a convex set
(although extensions to prox-regular sets could be achieved
and be the matter of a future work). For convex sets, it
is natural to consider the Moreau-Yosida approximation
(see [2] and references herein for more details on the
Moreau envelope). The characteristic function of Kc can
be written:

1Kc(x) = γ(χK(x)),

where γ(v) = 1− e−v and χK is the indicator of K :

χK(x) :=

∣∣∣∣
0 if x ∈ K,

+∞ if x /∈ K.

Then we recall the following results:
1. When K is convex, the Moreau envelope of K is of class
C1,1 :

x �−→ eε(x) :=
1

2ε
d(x,K)2

2. One has γ(eε(x)) → 1Kc(x) when ε ↓ 0 for any x ∈ Rn.

Thus we consider the following regularized problem

(Pε) : inf
u∈U

JT
ε (u) with JT

ε (u) :=

∫ T

t0

γ(eε(xu(t))) dt.
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We consider a controlled dynamics in X ⊂ Rn
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where U is a compact convex set in Rm. Let K ⊂ X be
a closed set with non empty interior. The system is said
to be in a crisis when x(t) does not belong to the set
K. We shall also consider the usual hypotheses, that we
recall later, which guarantee the following assumption to
be fulfilled.
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U , we denote by xu(·) the unique absolutely continuous
solution of (1) such that x(t0) = x0 and defined over
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V iab[0,T ](K) := {x0 ∈ K ; ∃u ∈ U , xu(t) ∈ K, ∀t ∈ [0, T ]}.
When the constraints set K is not viable (i.e. V iab(K) �=
K), and x0 /∈ V iab[0,T ](K) the trajectory spends some
time outside K. One may then consider the minimal time
crisis problem:
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The paper is organized as follows. In the second section,
we recall the existence of an optimal control for the time
crisis problem and we apply the hybrid maximum principle
provided that an optimal trajectory satisfies a transverse
condition at every crossing time of K. The third section
is devoted to the study of a regularization scheme of
the time crisis problem and to the convergence of an
optimal solution of the regularized problem to a solution
of the time crisis problem. In particular, no transverse
condition is required when studying the approximated
optimal control problem. Finally, we consider in the last
section two examples where the time crisis is of particular
interest. In the first one, we show that a so-called myopic
strategy is optimal : it consists in minimizing the time in
Kc and in maximizing the time in K. In this example, the
viability kernel is empty. The second example is based on
the Lotka-Volterra model and involves a viability kernel.
We first compute this set and provide an optimal synthesis
for the minimum time problem to reach the viability
kernel. Finally, we show that there exist initial conditions
for which the time crisis is strictly less than the minimum
time to reach the viability kernel.

2. EXISTENCE RESULT AND HYBRID MAXIMUM
PRINCIPLE

Let us first state the results about the existence of optimal
solutions, under the following hypotheses.

Hypothesis 2. f , U and K fulfill the following properties:

(1) The set U is a non-empty compact set of Rm.
(2) The dynamics f is continuous w.r.t. (x, u), locally

Lipschitz w.r.t. x and satisfies the linear growth
condition: ∃ c > 0 s.t. ∀ (x, u) ∈ Rn × U , one has:

‖f(x, u)‖ ≤ c(1 + ‖x‖).
(3) For any x ∈ Rn, the set F (x) := {f(x, u) ; u ∈ U} is

a non-empty convex set.
(4) The set K is a compact set in Rn with non-empty

interior.

Proposition 3. For any t0 ∈ (−∞, T ] and x0 ∈ Rn, there
exists an optimal control of problem (P).

Proof. As a sketch of proof, one can consider the extended
set-valued map G from Rn+1 into the subsets of Rn+1 :

G(z) :=

∣∣∣∣∣
f(x, U)× {0} if x ∈ Int(K),
f(x, U)× [0, 1] if x ∈ ∂K,
f(x, U)× {1} if x ∈ Kc,

where z = (x, y), and use classical compactness arguments.

Define now the Hamiltonian associated to the optimal
control problem:

H(x, p, p0, u) = p · f(x, u)− p01Kc(x)

and notice that it is discontinuous w.r.t. to x preventing
the use of the standard Maximum Principle. Instead, one
may consider the Hybrid Maximum Principle (HMP). For
this, we recall the definition of crossing times.

Definition 4. We say that a time tc ∈ [t0, T ] is a regular
crossing time for a given trajectory x(·) if:
(1) The point x(tc) is s.t. x(tc) ∈ ∂K, and there exists

η > 0 such that for any t ∈ [tc−η, tc), resp. t ∈ (tc, tc+
η], one has x(t) ∈ K, resp. x(t) ∈ Kc.

(2) The control u associated to the solution x is left- and
right-continuous at tc.

(3) The trajectory is transverse to K at x(tc), i.e. for
any h� ∈ NK(x(tc)) such that there exists h ∈
TK(x(tc))\RK(x(tc)) with h� · h = 0, then one has:

h� · f(x(tc), u(tc)) �= 0.

Hypothesis 5. An optimal trajectory (x(·), u(·)) has no
(m = 0) or a finite number m ≥ 1 of regular crossing
times {t1, · · · , tm} over [t0, T ].

Proposition 6. Suppose that Hypotheses 2 and 5 are ful-
filled and let Tc := {t1, ..., tm}. Then, one has:

(1) ∃ p0 ≤ 0, p : [t0, T ] → Rn s.t. (p0, p(·)) �= 0 and

ṗ(t) = −∂xH(x(t), p(t), p0, u(t)) a.e. t /∈ Tc.
(2) u(t) ∈ argmaxv∈U H(x(t), p(t), p0, v) a.e. t ∈ [t0, T ]
(3) Transversality condition : p(T ) = 0.
(4) The Hamiltonian is constant along the trajectory.
(5) At any crossing time tc, we have :

p(t+c )− p(t−c ) ∈ NK(x(tc)).

Moreover ∃ h ∈ NK(x(tc)) with ‖h‖ = 1 s.t. :

p(t+c ) = p(t−c )+
p(t−c ) · (f(x(tc), u(t−c ))− f(x(tc), u(t

+
c ))) + σp0

h.f(x(tc), u(t
+
c ))

h

where σ = −1 (inner) or 1 (outer).

Proof. It is based on application of [9, 10, 7].

Recall that a statement of the HMP without the Hypoth-
esis 5 is an open problem.

Another approach to encounter the difficulty due to the
discontinuity of the Hamiltonian is to consider a regular-
ization of the criterion.

3. REGULARIZATION OF THE PROBLEM AND
CONVERGENCE RESULTS

In this Section we shall assume that K is a convex set
(although extensions to prox-regular sets could be achieved
and be the matter of a future work). For convex sets, it
is natural to consider the Moreau-Yosida approximation
(see [2] and references herein for more details on the
Moreau envelope). The characteristic function of Kc can
be written:

1Kc(x) = γ(χK(x)),

where γ(v) = 1− e−v and χK is the indicator of K :

χK(x) :=

∣∣∣∣
0 if x ∈ K,

+∞ if x /∈ K.

Then we recall the following results:
1. When K is convex, the Moreau envelope of K is of class
C1,1 :

x �−→ eε(x) :=
1

2ε
d(x,K)2

2. One has γ(eε(x)) → 1Kc(x) when ε ↓ 0 for any x ∈ Rn.

Thus we consider the following regularized problem

(Pε) : inf
u∈U

JT
ε (u) with JT

ε (u) :=

∫ T

t0

γ(eε(xu(t))) dt.
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