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1. INTRODUCTION

Because of its ability of handling nonlinearity and system
constraints, model predictive control (MPC) is becoming
increasingly popular in industrial applications and pro-
cess control, see examples in Qin and Badgwell (2003).
This control paradigm normally relegates economic and
profitability issues to the design of optimal set-points and
suitable pointwise in time constraints. Real-time control
is, instead, only concerned with the resulting tracking
problem which is translated as an optimization problem
over a finite time horizon and with an objective function
which is (for the sake of stability) chosen to be positive
definite with respect to some equilibrium of interest. In
recent years, however, an alternative approach, economic
MPC (EMPC), has looked into the issue of directly ad-
dressing economic optimization in real time, and to this
end, adopts cost functionals which are not required to be
positive definite with respect to the equilibrium point.

In this respect, various tools in literature have been
proposed and studied in the economic optimization setup.
In analogy to Mayne et al. (2000), where three ingredients
are elaborated in stabilizing MPC, consisting of terminal
cost, terminal constraint and local controller, similar tools
have been proposed for Economic MPC and have allowed
feasibility, stability and performance analysis of the closed-
loop system. In Rawlings et al. (2012), Angeli et al.
(2012) and Amrit et al. (2011), asymptotic stability of
EMPC with terminal constraints or terminal costs has
been proved by using a rotated stage cost in an auxiliary
optimization problem, provided that a condition called
strict dissipativity is satisfied. Moreover, in these papers,
concepts on EMPC are extended to periodic terminal
constraint and average constraints. In order to obtain
a larger feasibility set, a new generalized terminal state
constraint where the terminal state-input pair can be a free
variable in optimization process is studied by Fagiano and

Teel (2013). Based on the generalized terminal equality
constraint, several update rules for the self-tuning terminal
weight are illustrated in Müller et al. (2013). Furthermore,
in Müller et al. (2014), the closed-loop asymptotic average
performance bounds can be improved if the generalized
terminal equality is relaxed by regional constraint.

However, optimal regimes of operation may have com-
plex nature, periodic operation can outperform steady-
state and even more general regimes of operations could
sometimes arise. To deal with such instances, this work
will remove terminal equality constraints and employ a
suitable notion of “control storage function” (CSF) as the
terminal penalty function. The note is organized as follows.
Notation and problem setup are described in Section 2.
Section 3 provides an estimate to some upper and lower
bound for system asymptotic average performance. The
extension of EMPC formulation and the closed-loop sta-
bility are discussed in Section 4. Two examples indicating
the convergence to the best periodic solution are included
in Section 5. Section 6 concludes this paper.

2. PRELIMINARIES AND SETUP

2.1 Notation

The Euclidean norm of x is |x|. Let symbols R and I denote
the sets of real numbers and integers, respectively. I[a,b]
denotes the integers {a, a + 1, · · · , b} and I≥0 denotes
the non-negative integers. A continuous function α: [0, ∞)
→ [0, ∞) is of class K, if it is zero at zero and strictly
increasing. A continuous function ρ : Rn → R is positive
definite with respect to some point xe ∈ Rn if ρ(xe) = 0
and ρ(x) > 0 for all x �= xe. The distance of a point x ∈ Rn

to a set Π is denoted as |x|Π := minz∈Π |x− z|.
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2.2 Problem setup

We consider finite dimensional discrete-time nonlinear
control systems described by difference equations

x+ = f(x, u) (1)

with state x ∈ X ⊂ Rn, input u ∈ U ⊂ Rm, and a
continuous state transition map f : X× U → X. Together
with system (1), let us consider a time-invariant, nonlinear,
nonconvex, but continuous stage cost given as

�(x, u) : Z → R (2)

where Z is a compact set capturing the pointwise-in-time
state and input constraints which our system is subject to:

(x(k), u(k)) ∈ Z, ∀k ∈ I≥0. (3)

Our goal is to enhance profitability by minimizing the
economic costs incurred in the long term system operation:

V (x,u) =
∑
k

�(x(k), u(k)), x+ = f(x, u), x(0) = x.

(4)
To this end, we need to identify a viable subset of state
space and corresponding control actions. As well known,
the notion of control invariant set is crucial in this respect.

Definition 1. A control invariant set is any non-empty
closed set X ⊆ X, such that ∀x ∈ X, ∃u : f(x, u) ∈
X and (x, u) ∈ Z. The corresponding input which keeps
the system state inside X is denoted as U(x) := {u | (x, u) ∈
Z and f(x, u) ∈ X}. The set of state and corresponding
admissible input pairs is Z :=

⋃
x∈X[{x} × U(x)].

Remark 2. We consider the largest control invariant set
X ⊆ X. This contains all control invariant sets in X and
any given intial condition x(0) /∈ X generates trajectories
which violate system constraints (3) at some point in time.
Therefore, constraints (3) can be strengthened as follows:

(x(k), u(k)) ∈ Z, ∀k ∈ I≥0, (5)

and viability is still guaranteed for initial state x ∈ X.

It will also be convenient to define an additional control
invariant set for later use as in the assumption below

Assumption 1. There is a control invariant set Xf ⊆ X and
a set of admissible control which keeps the state inside Xf

as Uf (x) := {u ∈ U(x) | f(x, u) ∈ Xf}.

The set of state and corresponding admissible input pairs
is denoted as Zf :=

⋃
x∈Xf

[{x} × Uf (x)].

3. DISSIPATIVITY AND CONTROL STORAGE
FUNCTIONS

In order to have a grasp of the system long-run optimal
average performance, three quantities �∗av, � and �, which
are explicitly defined below, will be addressed.

Definition 3. Let x ∈ X be a given initial state, then the
best average asymptotic cost is defined as:

�∗av(x) := inf
u(·)

x(0) = x, x+ =f(x, u)

(x(t), u(t)) ∈ Z

lim inf
T→+∞

∑T−1
t=0 �(x(t), u(t))

T
.

(6)
Moreover, we denote by �∗av = inf

x∈X
�∗av(x).

Recall the notion of dissipativity as given in Definition 4.1
in Angeli et al. (2012),

Definition 4. A discrete time system is dissipative with
respect to a supply rate s : Z → R if there is a continuous
storage function λ : X → R such that:

λ(f(x, u))− λ(x) ≤ s(x, u) (7)

for all (x, u) ∈ Z. If in addition a positive definite function
ρ : X → R≥0 exists such that:

λ(f(x, u))− λ(x) ≤ −ρ(x) + s(x, u), (8)

then the system is said to be strictly dissipative.

Alternatively, given the role of dissipativity in providing
lower bounds to the best asymptotic performance, one may
consider the following quantity,

Definition 5. The tightest lower bound of �∗av is defined
as:

� := sup
c
{ c | ∃λ(·) : X → R, continuous, such that

λ(f(x, u)) ≤ λ(x) + �(x, u)− c, ∀(x, u) ∈ Z}.
(9)

Next, along the lines of the well known tool of Control
Lyapunov Function (CLF) (see definition in Rawlings and
Mayne (2009)), we propose a similar concept referred to
as Control Storage Function (CSF).

Definition 6. A control storage function is a function Vf :
Xf → R that is continuous and such that for all x ∈ Xf

inf
u∈Uf (x)

Vf (f(x, u))− s(x, u) ≤ Vf (x), (10)

where s : Zf → R is the supply rate.

As a special case of CSF, a CLF, in which s(x, u) = 0,
is frequently used to approximate the tail of the infinite
horizon cost of tracking MPC. Our CSF is meant to be an
appropriate choice of terminal cost in an economic setup.

In order to estimate an upper bound for the best asymp-
totic performance, the quantity below can be specified,

Definition 7. The tightest upper bound of �∗av is defined
as:
� := inf

c
{ c | ∃Vf : Xf → R, such that ∀x ∈ Xf ,

inf
u∈Uf (x)

Vf (f(x, u)) + �(x, u) ≤ Vf (x) + c}. (11)

Remark 8. Notice that the above CSF inequality in Def-
inition 6 follows the same form of the Hamilton-Jacobi-
Bellman (HJB) inequality, so any CSF can also be re-
garded as a solution of the HJB inequality.

We are now ready to state the main result of this Section:

Theorem 9. Consider system (1) subject to constraints
(5), then, the following inequality holds:

� ≤ �∗av(x), ∀x ∈ X. (12)

In addition, if Assumption 1 is fulfilled, we have the
following upper bound for �∗av(x):

�∗av(x) ≤ �, ∀x ∈ Xf . (13)

Proof. The inequality (12) is derived from the dissipativ-
ity with supply rate s(x, u) = �(x, u)− � along any feasible
solution, whereas (13) is obtained by applying the same
technique on CSF with supply rate s(x, u) = �− �(x, u). �

If a system is controllable within finite time to the best
optimal operation, every initial condition gives the same
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If a system is controllable within finite time to the best
optimal operation, every initial condition gives the same
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