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Abstract: Efficient integration schemes with sensitivity propagation are crucial for deploying
real-time Nonlinear Model Predictive Control on systems described by continuous time dy-
namics. Implicit integration schemes are preferred when stiff modes are present in the model
equations, or when the equations are implicit. We consider here a class of models, where the
dynamics are linear, but coupled to a general static nonlinear feedback function. We propose
a collocation-based implicit integration scheme where a lifting-condensing approach is used to
exploit this specific structure to reduce the size of the linear algebra underlying the integrator.
This technique yields a significant reduction in the computational complexity of performing
the system integration and sensitivity analysis, when the static nonlinearity is of much smaller
dimensions than the complete dynamics. The proposed method is illustrated on a complex wind
turbine model, resulting in a significant gain of computational time in the linear algebra, and
an overall gain of computational time of a factor 2.
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1. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) (Mayne and
Rawlings, 2013) and Moving Horizon Estimation (MHE)
(Rao, 2000) are successful approaches to tackle real-time
optimal control and estimation, because they can explicitly
handle constraints and nonlinear dynamics. For systems
having fast dynamics, the high computational demand of
NMPC and MHE is a major challenge for their real-time
deployment. Indeed, an Optimal Control Problem (OCP)
needs to be solved at every sampling time, while respecting
the time constraints imposed by the real-time application.
Recent algorithmic progress (Diehl et al., 2009; Kirches
et al., 2010) allows to consider NMPC and MHE for fast
systems. Among the available online algorithms, the Real-
Time Iteration (RTI) scheme (Diehl et al., 2002) is a very
successful approach.

A central component in deploying NMPC and MHE
schemes is the handling of the nonlinear continuous time
dynamics that represent the physical evolution of the real
system. NMPC and MHE require numerical simulations
of these dynamics, together with the propagation of the
sensitivities of these simulations for direct optimal con-
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trol (Bock and Plitt, 1984). Many of these simulations have
to be carried out at every sampling time of the NMPC or
MHE scheme, for each OCP solution. This often forms one
of the computational bottlenecks of deploying NMPC and
MHE in real time.

For systems having stiff or implicit dynamics, implicit
integration schemes are typically preferred as they allow
for performing the simulations of the system model at a
lower computational cost than explicit schemes (Hairer
and Wanner, 1991). Implicit integrators require, in most
cases, solving numerically a set of nonlinear equations for
each integration step. This nonlinear system can be solved
via a Newton iteration, which requires the deployment of
an efficient, typically dense linear algebra within the inte-
grator. The corresponding matrix factorizations are then
typically the computational bottleneck of the numerical
integration scheme (Quirynen et al., 2012).

For small to medium-scale systems, which are relatively
dense, one typically uses dense linear algebra routines.
The computational complexity of the matrix factoriza-
tions grows cubically with the problem size (Golub and
Loan, 1996). Recent research work has been proposed to
exploit structures commonly present in dynamic models
in order to reduce the size of the linear algebra under-
lying the integrator and therefore its computational cost,
e.g., see (Quirynen et al., 2013). An alternative is to use

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 547

Implicit Integrators for Linear Dynamics

Coupled to a Nonlinear Static Feedback

and Application to Wind Turbine Control ⋆
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a structured Jacobian approximation in a Newton-type
implementation as proposed in (Butcher, 1976).

In this paper, we are interested in model structures where a
large linear dynamic system is coupled to a smaller, static
nonlinear feedback. More specifically, we consider dynamic
models having the following structure:

Eẋ = Ax +Bu +Cφ (Dx +F ẋ, u) , (1)

where x ∈ R
nx and φ ∶ Rnin ↦ R

nout . For the sake of
simplicity, we will consider that matrices A,E ∈ Rnx×nx ,
B ∈ Rnx×nu , D,F ∈ Rnin×nx and C ∈ Rnx×nout are constant.
We will be interested in systems where nout ≪ nx, i.e.,
where the linear dynamics have a significantly larger
dimension than the nonlinear feedback function.

u

u x

D
x+

F
ẋ

Eẋ = Ax +Bu +Cν

φ (y, u)

ν

y

Fig. 1. Schematic of the dynamics considered in this paper.

Figure 1 illustrates the dynamic model structure. It arises
in many mechanical applications where, e.g., structural
vibrations are modeled and yield large linear dynamics,
while being driven by a relatively smaller number of forces
that depend nonlinearly on the inputs, states, and possibly
on their time derivatives. We show in this paper that
the linear dynamics and the nonlinear static feedback in
the dynamic system can be exploited in collocation based
implicit integrators (Quirynen et al., 2016a). This can
significantly reduce the size of the linear system solutions
underlying the integrator in the proposed implementation.

The paper is organized as follows. Section 2 provides pre-
liminaries for the paper. Section 3 presents the proposed
method for reducing the complexity of the linear alge-
bra underlying the collocation-based integrator. Section 4
presents an application example of a complex, industrial
wind turbine model. Section 5 presents the conclusions.

Contribution: this paper presents a method to perform
the numerical integration of a specific class of nonlinear
dynamic models via collocation-based integration schemes,
which can allow for a large reduction of the computational
complexity of the numerical integration.

2. DIRECT OPTIMAL CONTROL

We consider NMPC schemes, which solve an optimal
control problem in the form:

min
x(⋅),u(⋅)

�x(t + T ) − x̄�2P +

�
t+T

t
�x (τ) − x̄�2Q + �u (τ) − ū�2R dτ (2a)

s.t. x (t) − x̂ (t) = 0 (2b)

F (ẋ (τ) , x (τ) , u (τ)) = 0, ∀τ ∈ [t, t + T ] (2c)

h (x (τ) , u (τ)) ≤ 0, (2d)

where x (⋅) ∈ Rnx and u (⋅) ∈ Rnu are the states and inputs,
respectively, and x̄ (⋅) and ū (⋅) are the corresponding
reference trajectories. The value T denotes the NMPC
prediction horizon and x̂ (t) is the state estimation at the
current time t. The dynamics of the physical system are
captured in the model function F , where the differential
state derivatives ẋ (⋅) are defined implicitly. Function h
gathers the constraints imposed on the control problem.
Note that MHE requires the solution of an OCP with a
very similar structure (Diehl et al., 2009).

2.1 Direct Multiple Shooting

A successful approach for treating problem (2) numerically
is the Multiple Shooting method (Bock and Plitt, 1984),
where the control input is typically parameterized as a
piecewise-constant over a uniform time grid

u(τ) = uk for τ ∈ [tk, tk+1) , (3)

for k = 0, . . . ,N − 1 and where tN − t0 = T . The states can
be discretized on the same time grid, taking the values
x0, . . . , xN . The continuous time dynamics are handled
separately on each time interval [tk, tk+1] via numerical
integration. Let us define the function f (xk, uk), which
for a state value xk and a piecewise constant input uk at
time tk, delivers a simulation of the dynamics (2c) over
the time interval [tk, tk+1]. The OCP in Eq. (2) is then
typically parameterized as:

min
x,u

�xN − x̄�2P +
N−1

�
k=0

�xk − x̄�2Q + �uk − ū�2R (4a)

s.t. x0 − x̂ (t) = 0 (4b)

f (xk, uk) − xk+1 = 0, k = 0, . . . ,N − 1 (4c)

h (xk, uk) ≤ 0. (4d)

Our focus here is to propose an efficient evaluation of
the numerical integration in (4c) for the specific dynamic
structure in (1). As discussed also further, it is addi-
tionally important to be able to efficiently evaluate first
and possibly higher order derivatives (Griewank, 2000;
Quirynen et al., 2016b) when using Newton-type optimiza-
tion (Nocedal and Wright, 2006) to solve the nonlinear
optimization problem in (4).

2.2 Collocation-based Integration

A collocation-based integration of the dynamics in (1)
is based on a polynomial approximation of the state
trajectories x(t) on the shooting intervals [tk, tk+1]:

x(sk, t) = K

�
i=0

sk,iPk,i(t), for t ∈ [tk, tk+1], (5)

where sk,i are the collocation variables, which we will note:

sk =
⎡⎢⎢⎢⎢⎣
sk,0
...

sk,K

⎤⎥⎥⎥⎥⎦
(6)
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in the following. Note that Pk,i(t) are the Lagrange basis
polynomials of order K, defined as:

Pk,i (t) = K

�
j=0, j≠i

t − tk,j

tk,i − tk,j
∈ R

and having the property:

Pk,i(tk,j) = � 1 if i = j
0 otherwise

(7)

where the times tk,0, ..., tk,K ∈ [tk, tk+1] are the collocation
points. It follows that x(sk, tk,i) = sk,i, which are called
the stage values for i = 0, . . . ,K. The first time point tk,0
is given by tk,0 = tk while tk,1, ..., tk,K are defined as the
zeros of the shifted Legendre polynomials on the interval[tk, tk+1], in the case of a Gauss collocation formula. Note
that other methods exist based on different collocation
points, as discussed in (Hairer and Wanner, 1991).

Let us consider an implicit, first-order ODE system
F (ẋ, x, u) = 0 as in (2c), over the time interval [tk, tk+1]
with initial conditions x(tk) = xk. A collocation-based in-
tegrator then proceeds with solving the following nonlinear
system of K + 1 equations:

F �K

�
i=0

sk,iṖk,i(tk,j), sk,j , uk� = 0, j = 1, . . . ,K (8a)

sk,0 − xk = 0. (8b)

Equation (8b) ensures that the polynomial interpolation
in (5) satisfies the initial condition x(tk) = xk. In addition,
Eq. (8a) ensures that the polynomial satisfies the ODE on
the collocation points tk,1, ..., tk,K . Note that, in general,
one can use multiple steps Ns of the above collocation-
based integration scheme. In what follows, we restrict to
the case of Ns = 1 to preserve a compact notation.

2.3 Structured Collocation Equations

In the following, for ease of notation, we define the expres-
sion y =Dx+F ẋ and consider ∇yφ, ∇uφ as the gradients of
function φ with respect to its first and second arguments.
We will assume that E−C ∇yφ

⊺F in (1) has full rank, such
that the dynamic system has well-defined state trajectories
at all times. We additionally assume in this paper that
matrix E is invertible, i.e. the linear dynamics are in
the form of an ODE and are not degenerated to a DAE.
For the specific dynamic structure in (1), the collocation
equations (8) read as:

K

�
i=0

Esk,iṖi(tk,j) −Ask,j −Buk

−Cφ�Dsk,j +
K

�
i=0

Fsk,iṖi(tk,j), uk� = 0 (9a)

sk,0 − xk = 0 (9b)

for j = 1, ...,K. For simplicity of notation, let us define the
following matrix:

Ṗ =
⎡⎢⎢⎢⎢⎢⎣
Ṗ0 (tk,1) ⋯ ṖK (tk,1)
⋮ ⋮

Ṗ0 (tk,K) ⋯ ṖK (tk,K)
⎤⎥⎥⎥⎥⎥⎦
. (10)

Equations (9) can then be written as the compact system
of nonlinear equations:

Ask −Buk −CΦ (Dsk, uk) − Ixk = 0 (11)

to be solved for the collocation variables sk. The matrices
A,B,C,D, I are given by:

A = � Ṗ ⊗E
I 0 ... 0

� − � 0 IK ⊗A
0 0

� (12a)

B =
⎡⎢⎢⎢⎢⎢⎢⎣

B
...
B
0

⎤⎥⎥⎥⎥⎥⎥⎦
, I =

⎡⎢⎢⎢⎢⎢⎢⎣

0
...
0
I

⎤⎥⎥⎥⎥⎥⎥⎦
(12b)

C = � IK ⊗C
0
� (12c)

D = [ 0 IK ⊗D ] + Ṗ ⊗ F, (12d)

where ⊗ denotes the Kronecker product, and I ∈ Rnx×nx

and IK ∈ R
K×K are identity matrices. In addition, we

define the function Φ (Dsk, uk) as:
Φ (Dsk, uk) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ�Dsk,1 +
K

�
i=0

Fsk,iṖi(tk,1), uk�
...

φ�Dsk,K +
K

�
i=0

Fsk,iṖi(tk,K), uk�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

In the following, we will use ∇x to denote the trans-
pose of the Jacobian operator with respect to variable x.
The variable is omitted when unambiguous. A classical
collocation-based integrator would then solve the set of
equations (11) typically via a Newton-type scheme as
discussed in (Butcher, 1976). A full-step, exact Newton
iteration sk ← sk +∆sk then relies on the solution of the
following linear system

∇sk
r(⋅)⊺∆sk = −r(sk, xk, uk), (14)

where the following compact notation is used:

r(⋅) =Ask −CΦ (Dsk, uk) −Buk − Ixk (15a)

∇sk
r(⋅)⊺ =A −C∇yΦ (Dsk, uk)⊺D. (15b)

Note that the last equation (9b) in the system of colloca-
tion equations defines sk,0 trivially, such that the Newton
step can be computed for the remaining K nx nonlinear
equations. The complexity of computing a Newton step
in (14) is typically dominated by the factorization of the
Jacobian matrix ∇sk

r(⋅)⊺. Because the sparsity pattern in
the resulting linear system is generally difficult to exploit,
one can expect the complexity of solving the collocation
equations to be of the order

Cclassic = O�n3
xK

3� . (16)

Upon solving these equations for the collocation variables
sk, the end state of the integrator is given by:

f(xk, uk) = K

�
i=0

sk,iPi(tk+1) = Tsk (17)

in the discrete time dynamics (4c) of the OCP, where

T = [ P0(tk+1) ... PK(tk+1) ]⊗ Inx
. (18)

3. A LIFTING-CONDENSING OF THE
COLLOCATION EQUATIONS

We propose here a lifting-condensing approach to turn the
large nonlinear system (11) into a small system, result-
ing in a specific form of the lifted Newton method (Al-
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