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Abstract: The problem of approximating a given fluid flow control problem, governed by
the Navier-Stokes equations at varying Reynolds number, with a low-order parametric linear
dynamical model, is presented. To this aim, a three steps approach is proposed: first, (i)
the original Reynolds number dependent fluid flow problem is spatially and parametrically
discretized, then (i) each resulting local very large-scale Linear Time Invariant (LTT) Differential
Algebraic Equations (DAE) models are approximated using the IRKA approach proposed
by Gugercin et al. (2008), and finally (%ii), the reduced order models are interpolated and
transformed into a low-complexity Linear Fractional Representation (LFR). The overall process
is illustrated in a top down framework using a generic flow configuration, namely, an open cavity
flow. Numerical simulations assess the validity of the approach.
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1. INTRODUCTION AND MOTIVATIONS
1.1 Fluid flow problem formulation and contribution

Numerical simulation of dynamical systems plays a pivotal
role in many engineering fields to study a wide range of
complex physical phenomena (e.g. in optimization and
control studies). However, the ever-increasing need for ac-
curacy and use of computer-based modelling tools, allow-
ing to well capture the physics, potentially leads to models
equipped with extremely large-scale number of variables,
equations and state degrees of freedom. Because of the fi-
nite machine precision and limited computational burden,
the simulation of these models might become numerically
inefficient, see e.g. (Saad, 2000; Antoulas, 2005). This is
the reason why dynamical model reduction (or approxima-
tion) offers an interesting remedy to this problem leading
to models that are simpler to analyse and faster to simulate
while accurately reproducing the original behaviour.

More specifically, within the fluid flow community, engi-
neers and researchers are used to manipulate very large-
scale DAE models, potentially nonlinear or irrational
(e.g. obtained from partial differential equations). In their
more general form, these dynamical models, might take
the following form:

X(t) = f(X(t), u(t)a Re)a y(t) = g(X(t), u(t)v Re)7 (1)
where x(t) € R, u(t) € R™, y(t) € R™ and Re € Ry
are the state-space, input, output vectors and Reynolds
number, respectively. Due to their nonlinear behaviour,
Reynolds number dependency and large value of n (~ 107),
these models clearly are inappropriate for any kind of anal-
ysis, control and optimization methods!. As made clearer
in the following sections, we propose to approximate the

I Indeed, except adjoin methods of Sipp et al. (2010), most of the
analysis and control tools are not tailored to this kind of models.

above initial equation (1) by H(Re), a low-order DAE
linear parameter dependent model described as follows:

E(Re)x(t) = A(Re)x(t) + B(Re)u(t), y(t) = C(Re)x(t),
(2)
where £ € R"™*", A € R™", B € R"™*" and C' € R™*"
might be linearly Re dependent. The main purpose of
transforming (1) into (2) is to be able to construct a
simple but representative LFR which is well adapted in the
context of robust controller synthesis and analysis methods
developed within the control community (Magni, 2006).

In this paper, our objective is intended to bridge the gap
between the fluid flow and the control communities by
proposing a methodology to simplify any transitional fluid
flow configuration problem (evolving at different configu-
rations) by a linear dynamical reduced order parametrized
model, appropriate for simulation, analysis and (robust)
control? . To this aim, a three steps strategy is proposed:
(i) first, the original flow control problem is linearised
around an equilibrium, for varying parametric Reynolds
values, then (ii) each local very-large scale linear DAE
models are approximated using advanced model reduction
methods, and finally (7) interpolated to generate a para-
metric low complexity model, transformed into an LFR.

Throughout this paper, each steps of the proposed
methodology is illustrated by means of an interesting flow
control configuration known as the open cavity, see Figure
1. From a control point of view, as illustrated later on, one
of the main interest of this configuration is that, according
to the Reynolds number, the model might vary from stable

2 Still, the reader should note that other attempts have already
been performed to simplify fluid flow dynamical models using Proper
Orthogonal Decomposition, Rational Krylov, Balanced truncation,
Balanced POD, Eigen-Realization algorithms etc., as in Barbagallo
et al. (2009); Rowley (2005); Ma et al. (2011); Borggaard and
Gugercin (2014), but to the authors knowledge, never in the case
of low complexity parametrized models.
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Fig. 1. Open cavity flowfield illustration - from left to
right (vorticity snapshot obtained by time-marching
the non-linear Navier-Stokes equations).

to unstable which is a challenging issue for both modelling,
model reduction and control perspectives. From a fluid
point of view, the objective is to maintain the flow laminar
in various conditions: in that perspective, linearized mod-
els of the Navier-Stokes equations governing the dynamics
of small-amplitude perturbations around fixed-points are
sufficient to determine a control law from a given sensor.

1.2 Open cavity flow control configuration

The test-case is a two-dimensional open square cavity,
which has the same geometry and boundary conditions as
that described in Barbagallo et al. (2009). The reference
quantities used to non-dimensionalize the governing equa-
tions are the uniform flow velocity Uy, the cavity depth
D, the Reynolds number defined as Re = Uy, D /v, where
v is the viscosity. The origin of the coordinate system
(z =0,y = 0) is set at the upstream corner of the cavity, so
that the downstream edge is at (z = 1,y = 0). Boundary
conditions are set as follows: uniform unitary flow at the
inlet boundary (z = —1.2), standard exit conditions at
the outlet (r = 2.5)3, free-slip conditions on the upper
boundary (y = 0.5) and on the following parts of the lower
boundary (—1.2 <z < —04,y =0) and (1.75 < = < 2.5),
while no-slip conditions are prescribed on the remaining
parts of the lower boundary from (—0.4 <z < 1.75). The
mesh used is composed of 193,874 triangles, corresponding
to n = 680,974 degrees of freedom for the three vari-
ables (vg,vy,v,). Here for the spatial discretization of the
governing equations, we use Arnold-Brezzi-Fortin MINI-
elements with four-node P1b elements for the velocity
components and three-node P1 elements for the pressure.

1.8 Paper notations and structure

Throughout the paper, the following notations will be
used: H (resp. H(s)) denotes the full order state-space
model realization (resp. transfer function) of order n and
H (resp. H(s)) stands for the reduced order state-space
model realization (resp. transfer function) of order r < n.

The paper is structured as follows: Section 2 first de-
scribes the original open cavity configuration fluid flow
nonlinear partial differential equations, then summarizes
the linearisation procedure. In Section 3, as rooted on the

3 We impose —pn + vV - n = 0, where n is the outward normal to
the domain.

obtained multiple local very large-scale linear equations,
low order DAE models are obtained through an interpo-
latory method. Then, the interpolation in a state-space
realization basis is performed and followed by an LFR
generation in Section 4. Conclusions and discussions are
then given in Section 5.

2. LINEARISATION AND DISCRETISATION OF THE
OPEN CAVITY FLUID FLOW CONFIGURATION

2.1 Nonlinear infinite dimensional modelling, input and
output definitions

The full non-dimensionalized non-linear governing equa-
tions are written for the velocity field v = (v,,v,) and the
pressure p (A is the Laplacian, V the gradient operator):

1
Re
where the control input fu(t) is a volumic forcing on
the cross-stream component of the momentum equations
located near the upstream edge of the cavity:

f = (0,exp(—((z +0.1)% + (y — 0.02))/0.014416),0). (4)
A typical snapshot of the flowfield obtained without forc-
ing (u = 0) is shown in Fig. 1. We clearly observe a
boundary layer starting at (zr = —0.4,y = 0) and a thin
shear layer on the cavity lip. This thin shear-layer will
generate Kelvin-Helmholtz type instabilities that induce
a global instability of the flow in the form of a Hopf
bifurcation at Re = 4140 (Sipp and Lebedev, 2007). For
the output of the control set-up, we consider a shear-stress
measurement downstream of the right edge of the cavity:

rx=1.1 8’(]@
t) = ==
y(t) /m:1 dy

With the actuator u(t) and the sensor y(t), we are there-
fore led to a single-input-single-output (SISO) sytem.

Ov+v-Vv=-Vp+—Av+fult), V-v=0 (3)

dz. (5)

y=0

2.2 Linearisation and discretisation

In the following, we focus on the dynamics of small-
amplitude perturbations (e < 1) in the vicinity of a base-
flow, which is a fixed point of the Navier-Stokes equations:

x(t) = x{™ + ex; (t). In the same spirit, we write y(t) =
yéRe) +ey1(t) and u(t) = eu; (t). The perturbation nge)(t)
is then governed by the linearized discretized Navier-
Stokes equations around fixed point (v = vg, u = 0):

E).(l (t) = A(Re)x1 (t) + Bul(t) , U1 (t) = CXl(t)7 (6)
where A(Re) = O0f/0x| (re) is the dynamical matrix.

Then B, C and E are the parameter independent input,
output and mass-matrix associated to the finite-element
discretization, respectively. C' corresponds to the matrix
extracting the shear-stress measurement. In the following,
to simplify notations, w;(¢) and y;(¢) will be replaced by
u(t) and y(t).

Considering ny; = 4 frozen Reynolds number values
Re = {4000, 5250, 6000, 7500}, we finally obtain n, = 4
Single Input Single Output (SISO) LTI DAE of order
n = 680,974, valid around small variations. For the spe-
cific considered problem, the reader should note that the
Reynolds number dependency appears on the dynamical
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