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1. INTRODUCTION

During the last decades there have been a growing interest
in geometrical description and interpretation of thermody-
namic systems. We refer the interested reader to the works
Mruga�la et al. (1991); Eberard et al. (2007); Merker and
Krüger (2013); Delvenne and Sandberg (2014); Gromov
and Caines (2015) and references therein for an overview
of different directions of research within this broad field.

One particularly important application of thermodynam-
ics is the design and optimisation of thermodynamic (heat)
engines, that is systems that transform heat energy into
the mechanic energy. By now, dozens of heat engines have
been developed working according to different schemes
(i.e., implementing different thermodynamic cycles). How-
ever, there is one aspect common for any heat engine: the
interaction between the thermodynamic subsystem and
the mechanical one. We believe that the geometrical anal-
ysis of the interconnection structure of these two systems
may allow us to better understand and optimise the overall
system in order to achieve maximal possible efficiency.

The main obstacle in developing this programme is that
thermodynamic and mechanical systems “live in differ-
ent worlds”: a mechanical system evolves on an even-
dimensional symplectic manifold while a thermodynamic
system evolves on an odd-dimensional submanifold of a
contact manifold (often referred to as the thermodynamic
phase space). Recently, there have been several attempts
to reconcile these representations. In particular, it was
shown that contact vector fields can be used to describe the
evolution of dissipative Hamiltonian systems (see Bravetti
et al. (2016) and references therein). On the other hand,
there are a number of results that attempt to describe ther-
modynamic systems using the Hamiltonian (symplectic)
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framework (see, e.g., Morrison (1998); Öttinger (2005)).
However, despite many theoretical advances there have not
been substantial progress in the geometrical description of
interconnected thermo-mechanical systems so far.

In this contribution we use the approach based upon
the symplectification of the thermodynamic evolution. It
is shown formally that the thermodynamic evolutionary
equations can be obtained in the same way as the ones
generated by a mechanical Hamiltonian.This approach
leads to certain loss of information. However, we argue
that this does not restrict the applicability of the approach
as we retain most important information. The developed
approach is illustrated by a simple, but physically relevant
example.

The paper is organized as follows. Section 2 gives a
brief overview of modelling Hamiltonian systems with
constraints. Section 3 presents necessary facts about the
description of thermodynamic evolution and discusses in
detail the bundle isomorphism induced by the thermo-
dynamic contact 1-form. In Sec. 4 we discuss different
approaches to the description of interconnected systems
while Sec. 5 presents an example.

2. HAMILTONIAN SYSTEMS WITH CONSTRAINTS

Consider a controlled mechanical system with the Hamil-
tonian H(q, p) : T ∗Q → R, where Q is the configuration
space which we assume to be equal to Rn. Let there be a
number of, generally, non-holonomic constraints expressed
as a distribution C(q) ∈ TqQ restricting the evolution of
the system. We assume that the distribution C is gener-
ated by a set of linearly independent 1-forms φi(q) ∈ T ∗Q,
i = 1, . . . , k. This implies that the admissible velocity vec-
tors q̇ belong to the kernel of a smooth k-dimensional co-
distribution C∗ ⊂ T ∗Q, i.e. q̇ ∈ kerC∗, which is expressed
as 〈q̇, σ〉 = 0 with σ ∈ C∗ and 〈·, ·〉 : TQ × T ∗Q → R
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1. INTRODUCTION

During the last decades there have been a growing interest
in geometrical description and interpretation of thermody-
namic systems. We refer the interested reader to the works
Mruga�la et al. (1991); Eberard et al. (2007); Merker and
Krüger (2013); Delvenne and Sandberg (2014); Gromov
and Caines (2015) and references therein for an overview
of different directions of research within this broad field.

One particularly important application of thermodynam-
ics is the design and optimisation of thermodynamic (heat)
engines, that is systems that transform heat energy into
the mechanic energy. By now, dozens of heat engines have
been developed working according to different schemes
(i.e., implementing different thermodynamic cycles). How-
ever, there is one aspect common for any heat engine: the
interaction between the thermodynamic subsystem and
the mechanical one. We believe that the geometrical anal-
ysis of the interconnection structure of these two systems
may allow us to better understand and optimise the overall
system in order to achieve maximal possible efficiency.

The main obstacle in developing this programme is that
thermodynamic and mechanical systems “live in differ-
ent worlds”: a mechanical system evolves on an even-
dimensional symplectic manifold while a thermodynamic
system evolves on an odd-dimensional submanifold of a
contact manifold (often referred to as the thermodynamic
phase space). Recently, there have been several attempts
to reconcile these representations. In particular, it was
shown that contact vector fields can be used to describe the
evolution of dissipative Hamiltonian systems (see Bravetti
et al. (2016) and references therein). On the other hand,
there are a number of results that attempt to describe ther-
modynamic systems using the Hamiltonian (symplectic)
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However, despite many theoretical advances there have not
been substantial progress in the geometrical description of
interconnected thermo-mechanical systems so far.

In this contribution we use the approach based upon
the symplectification of the thermodynamic evolution. It
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the standard pairing operation or, in algebraic notation,
as CT (q)q̇ = 0, where C(q) is an [n × k] matrix whose
columns are the components of the 1-forms spanning C∗

written in local coordinates.

The distribution C is said to be involutive if X,Y ∈ C ⇒
[X,Y ] ∈ C, where the square brackets denote the Lie
commutator of two vector fields. By Frobenius theorem an
involutive distribution can be integrated to yield k smooth
functions c(q) such that X(c) = 0. These functions are
referred to as the first integrals. In this case we say that
the respective constraints (2b) are holonomic. Otherwise,
the constraints are said to be non-holonomic. In practice,
the set of constraints include both holonomic and non-
holonomic constraints.

An unconstrained Hamiltonian system evolves on the state
space manifold T ∗Q which is endowed with the canonical
symplectic form ω = dqi ∧ dpi (here and henceforth the
Einstein summation convention is implied). This sym-
plectic form defines a canonical isomorphism between the
tangent and cotangent bundles: Ω : T (T ∗Q) → T ∗(T ∗Q)
defined by Ω(X)(·) = ω(X, ·). The vector field, correspond-
ing to the Hamiltonian H, is defined as XH = Ω−1(dH),
i.e. ω(XH , ·) = dH.

When dealing with the constrained system, the Hamilto-
nian function has to be augmented to take into account the
constraints. Thus, we define the constrained vector field as
follows:

XH,φ = Ω−1(dH + λiπ
∗
Qφ

i), (1)

where πQ : T ∗Q → Q is the projection of the cotangent
bundle on its base and π∗

Q is the pull-back of πQ which

lifts φi to T ∗(T ∗Q).

In local coordinates, the dynamics of a port-Hamiltonian
system with constraints is described by a set of differential-
algebraic equations of the form (Neimark and Fufaev,
1972; Arnold et al., 2006; Castaños et al., 2013):

ẋ = J∇H(x) + Ĉ(x)λ+ ĝ(x)u (2a)

0 = CT (q)∇pH(x) (2b)

y = ∇TH(x)ĝ(x) , (2c)

where H is the Hamiltonian (energy) function of the
unconstrained system, the state is given by xT =

(
qT pT

)
with r ∈ Q and p ∈ T ∗

r Q the positions and momenta,

respectively; Ĉ(x) =
(
0[k×n] C

T (x)
)T

, λ ∈ Rk is the
vector of implicit variables that enforce the constraints;
(u, y) ∈ R∗m × Rm are the conjugated external port

variables, and ĝ(x) =
(
0[m×n] g

T (x)
)T

is a (2n × m)-
matrix such that rank ĝ(x) = m for all x ∈ Rn ×R∗n. The
[2n×2n]-matrix J is the one associated with the canonical
symplectic form,

J =

(
0n In
−In 0n

)
.

Here and forth all functions are assumed to be smooth
enough and the gradient is assumed to be a column vector.

The vector field X ∈ T (T ∗Rn) is written as

X = DH +Dcλ+Xgu (3)

where

DH = Ω−1(dH) =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
(4)

is the Hamiltonian vector field,

DCλ = Cj
i (q)λj

∂

∂pi
(5)

is the vector field of the internal (constraint) forces, and

Xgu = gji uj
∂

∂pi
is the control vector field.

Equation (2b) constrains the configuration space of (2)
and can be written as DC(H) = 0. This is equivalent to
saying that the internal forces do not produce work as
there is no displacement in the direction of the constraint
forces and hence they do not alter the total energy of the
system. However, this may not be true in general, when
non-holonomic constraints of general form are considered
(see, e.g., (Bloch, 2003; Baruh, 1999)).

3. THERMODYNAMIC CONTACT VECTOR FIELDS

In this section, we present a brief overview of the geometric
approach to the description of thermodynamic systems’
evolution. For a more detailed treatment see Callen (1985);
Kondepudi and Prigogine (1998) for thermodynamics,
Geiges (2008); Arnold (1989) for contact geometry, and
Mruga©la et al. (1991); Gromov and Caines (2015) for the
contact description of thermodynamics.

3.1 Contact geometry basics

In the following, we will consider single phase, single
component homogeneous thermodynamic systems that do
not undergo any chemical transformations. The state space
of such a system can be represented as an embedded
manifold in the thermodynamic phase space M. This
manifold is shown to be an integral (Legendre) manifold
corresponding to a specific contact 1-form.

Definition 1. Let (x0, x1, . . . , xn, y1, . . . , yn) be the local
coordinates on M. The canonical thermodynamic contact
1-form is defined as

α = dx0 − yidx
i, 1 ≤ i ≤ n. (6)

Each Legendre manifold on (M, α) is uniquely determined
by a particular function.

Lemma 2. (Arnold (1989)). Let N = {1, . . . , n} be the
set of indices. Given the contact form (6), a disjoint
partitioning I, J ⊂ N , I ∩ J = ∅, I ∪ J = N with nI

and nJ components, nI + nJ = n, and a smooth function
ζ(xi, yj), i ∈ I, j ∈ J , the following equations define the
Legendre manifold Lζ on (M, α):

λ0(x, y) = x0 − ζ + yj
∂ζ

∂yj
= 0, (7a)

λj(x, y) = xj +
∂ζ

∂yj
= 0, (7b)

λi(x, y) = yi −
∂ζ

∂xi
= 0. (7c)

The variables (xi, yj), i ∈ I, j ∈ J can be chosen as local
coordinates in some open neighbourhood of a ∈ Lζ . The
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