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Abstract: We consider the problem of feedback control design for thermodynamic systems.
Following past contributions, we consider the expression of closed-loop control in the Thermo-
dynamic Phase Space (TPS) using contact geometry. Some of these past contributions identified
restricted classes of admissible controllers by restricting the dynamics to a Legendre submanifold
in the TPS. In this paper, we consider the problem of controlling a system through damping
feedback control. By allowing this particular class of feedback design technique, we characterize
the impact of control on the thermodynamic structure of the closed-loop system in the TPS.
An example is considered to illustrate the proposed construction.
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1. INTRODUCTION

An approach to study thermodynamic systems is to use
contact geometry, as an analogue of symplectic geometry
for classical mechanics (Arnold, 1989). This approach,
developed extensively to describe equilibrium thermody-
namics (Mrugala et al., 1991). In the context of control
systems analysis and feedback design for thermodynamic
systems, contact geometry was considered, through a lift of
a known control system, in (Eberard et al., 2007), (Favache
et al., 2009), (Favache et al., 2010), (Gromov and Caines,
2015), (Ramirez et al., 2013b), and more recently in (Wang
et al., 2015). Stability analysis problems were successfully
addressed for control systems using the contact geometry
approach, see for example the contribution by Maschke
(2016). As presented in (Favache et al., 2010), both the
energy and entropy functions can serve as the generating
potential for the representation of thermodynamic systems
using contact geometry. The Thermodynamic Phase Space
(TPS) approach has the advantage of encoding both laws
of thermodynamics in the expression of a system dynamics
in an extended phase space (Grmela, 2002). The construc-
tion proposed in (Grmela, 2002), built on material from
(Arnold, 1989), shows that the thermodynamic reciprocity
relations are encoded within this framework. Contact ge-
ometry also serves as the basis for the geometrothermo-
dynamics approach to nonequilibrium thermodynamics,
see for example the original contribution (Quevedo, 2007)
and applications presented in (Quevedo et al., 2011) and
(Quevedo and Tapias, 2014), where the TPS is endowed
with a metric, in the spirit of Weinhold and Ruppeiner
(Quevedo, 2007), i.e., by using the Hessian of the thermo-
dynamic potential as a metric. An indefinite Riemannian
metric was also introduced on the TPS in (Mrugala, 1996),
a construction later used in (Preston and Vargo, 2008) to

study geometric properties of constitutive surfaces defined
for different thermodynamic potentials.

The results developed in (Eberard et al., 2007; Favache
et al., 2009, 2010; Ramirez et al., 2013b; Wang et al.,
2015; Gromov and Caines, 2015) were key to understand
stability and stabilization problems for thermodynamic
systems: By lifting a n-dimensional controlled dynamics to
a (2n + 1)-dimensional dynamical systems endowed with
a contact structure, i .e., a differential one-form encoding
thermodynamics evolution constraints, it is possible to
restrict stability and stabilization problems to admissible
evolutions in an extended vector field. A further contri-
bution to this understanding about the interplay between
thermodynamic and feedback control is given in (Ramirez
et al., 2013a) where two results pertinent to the present
study were presented. First, it was demonstrated that the
only state feedback preserving a given contact structure
of a conservative control contact system is the constant
one. Second, a feedback design approach as solution to
matching equations, as used for passivity-based damping
assignment for port-controlled Hamiltonian (Astolfi and
Ortega, 2009), was considered in the TPS. The feedback
design approaches from the contribution (Ramirez et al.,
2013a) were characterized as restrictive, see for example
the review given in (Maschke, 2016) where a character-
ization of the desired properties of controlled system in
the TPS was proposed. However, it is not clear how
far from the working assumptions from (Ramirez et al.,
2013a) it is possible to go such that the resulting closed-
loop system preserves the thermodynamic structure of the
original system. The contribution(Maschke, 2016) pointed
out the importance of the lift to the TPS as a key factor
to assess stability (and indirectly feedback stabilization),
as the choice of a lift is linked to the definition of the Reeb
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(Quevedo and Tapias, 2014), where the TPS is endowed
with a metric, in the spirit of Weinhold and Ruppeiner
(Quevedo, 2007), i.e., by using the Hessian of the thermo-
dynamic potential as a metric. An indefinite Riemannian
metric was also introduced on the TPS in (Mrugala, 1996),
a construction later used in (Preston and Vargo, 2008) to

study geometric properties of constitutive surfaces defined
for different thermodynamic potentials.

The results developed in (Eberard et al., 2007; Favache
et al., 2009, 2010; Ramirez et al., 2013b; Wang et al.,
2015; Gromov and Caines, 2015) were key to understand
stability and stabilization problems for thermodynamic
systems: By lifting a n-dimensional controlled dynamics to
a (2n + 1)-dimensional dynamical systems endowed with
a contact structure, i .e., a differential one-form encoding
thermodynamics evolution constraints, it is possible to
restrict stability and stabilization problems to admissible
evolutions in an extended vector field. A further contri-
bution to this understanding about the interplay between
thermodynamic and feedback control is given in (Ramirez
et al., 2013a) where two results pertinent to the present
study were presented. First, it was demonstrated that the
only state feedback preserving a given contact structure
of a conservative control contact system is the constant
one. Second, a feedback design approach as solution to
matching equations, as used for passivity-based damping
assignment for port-controlled Hamiltonian (Astolfi and
Ortega, 2009), was considered in the TPS. The feedback
design approaches from the contribution (Ramirez et al.,
2013a) were characterized as restrictive, see for example
the review given in (Maschke, 2016) where a character-
ization of the desired properties of controlled system in
the TPS was proposed. However, it is not clear how
far from the working assumptions from (Ramirez et al.,
2013a) it is possible to go such that the resulting closed-
loop system preserves the thermodynamic structure of the
original system. The contribution(Maschke, 2016) pointed
out the importance of the lift to the TPS as a key factor
to assess stability (and indirectly feedback stabilization),
as the choice of a lift is linked to the definition of the Reeb
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Abstract: We consider the problem of feedback control design for thermodynamic systems.
Following past contributions, we consider the expression of closed-loop control in the Thermo-
dynamic Phase Space (TPS) using contact geometry. Some of these past contributions identified
restricted classes of admissible controllers by restricting the dynamics to a Legendre submanifold
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the impact of control on the thermodynamic structure of the closed-loop system in the TPS.
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1. INTRODUCTION

An approach to study thermodynamic systems is to use
contact geometry, as an analogue of symplectic geometry
for classical mechanics (Arnold, 1989). This approach,
developed extensively to describe equilibrium thermody-
namics (Mrugala et al., 1991). In the context of control
systems analysis and feedback design for thermodynamic
systems, contact geometry was considered, through a lift of
a known control system, in (Eberard et al., 2007), (Favache
et al., 2009), (Favache et al., 2010), (Gromov and Caines,
2015), (Ramirez et al., 2013b), and more recently in (Wang
et al., 2015). Stability analysis problems were successfully
addressed for control systems using the contact geometry
approach, see for example the contribution by Maschke
(2016). As presented in (Favache et al., 2010), both the
energy and entropy functions can serve as the generating
potential for the representation of thermodynamic systems
using contact geometry. The Thermodynamic Phase Space
(TPS) approach has the advantage of encoding both laws
of thermodynamics in the expression of a system dynamics
in an extended phase space (Grmela, 2002). The construc-
tion proposed in (Grmela, 2002), built on material from
(Arnold, 1989), shows that the thermodynamic reciprocity
relations are encoded within this framework. Contact ge-
ometry also serves as the basis for the geometrothermo-
dynamics approach to nonequilibrium thermodynamics,
see for example the original contribution (Quevedo, 2007)
and applications presented in (Quevedo et al., 2011) and
(Quevedo and Tapias, 2014), where the TPS is endowed
with a metric, in the spirit of Weinhold and Ruppeiner
(Quevedo, 2007), i.e., by using the Hessian of the thermo-
dynamic potential as a metric. An indefinite Riemannian
metric was also introduced on the TPS in (Mrugala, 1996),
a construction later used in (Preston and Vargo, 2008) to

study geometric properties of constitutive surfaces defined
for different thermodynamic potentials.

The results developed in (Eberard et al., 2007; Favache
et al., 2009, 2010; Ramirez et al., 2013b; Wang et al.,
2015; Gromov and Caines, 2015) were key to understand
stability and stabilization problems for thermodynamic
systems: By lifting a n-dimensional controlled dynamics to
a (2n + 1)-dimensional dynamical systems endowed with
a contact structure, i .e., a differential one-form encoding
thermodynamics evolution constraints, it is possible to
restrict stability and stabilization problems to admissible
evolutions in an extended vector field. A further contri-
bution to this understanding about the interplay between
thermodynamic and feedback control is given in (Ramirez
et al., 2013a) where two results pertinent to the present
study were presented. First, it was demonstrated that the
only state feedback preserving a given contact structure
of a conservative control contact system is the constant
one. Second, a feedback design approach as solution to
matching equations, as used for passivity-based damping
assignment for port-controlled Hamiltonian (Astolfi and
Ortega, 2009), was considered in the TPS. The feedback
design approaches from the contribution (Ramirez et al.,
2013a) were characterized as restrictive, see for example
the review given in (Maschke, 2016) where a character-
ization of the desired properties of controlled system in
the TPS was proposed. However, it is not clear how
far from the working assumptions from (Ramirez et al.,
2013a) it is possible to go such that the resulting closed-
loop system preserves the thermodynamic structure of the
original system. The contribution(Maschke, 2016) pointed
out the importance of the lift to the TPS as a key factor
to assess stability (and indirectly feedback stabilization),
as the choice of a lift is linked to the definition of the Reeb
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vector field, which is central to the analysis in the TPS
provided in (Ramirez et al., 2013a).

To clarify our understanding of the relations between
control design and the thermodynamic representation ap-
proach based on contact geometry, we consider a particular
class of physics-based feedback control design prior to the
performing a lift of the dynamics to the TPS. Follow-
ing previous investigations on damping feedback control
(Hudon and Guay, 2013), we study systems in closed-
loop in the TPS for which the control action has some
physical sense, as for example damping feedback for port-
controlled Hamiltonian systems (Ortega et al., 2002). With
this study, we hope to shed a light on the admissible
class of controllers, i .e., feedback controllers preserving the
thermodynamic structure of a given open-loop system.

This paper is organized as follows. Necessary background
on feedback control in the TPS is given in Section 2. In
Section 3, the lift of systems in closed-loop with damping
feedback controllers is studied. An example is given in
Section 4. Conclusions and future areas for investigation
are discussed in Section 5.

2. BACKGROUND

In this section, we summarize the theory of thermody-
namic systems expressed in the TPS, that is, using contact
geometry, following the exposition proposed originally in
(Eberard et al., 2007) and developed in (Ramirez et al.,
2013a; Maschke, 2016) for control design and feedback
stabilization.

We denote the n extensive variables by xi, i = 1, . . . , n,
and the thermodynamic potential by x0, for example the
energy x0 = E(x) or the Entropy x0 = S(x). The n
intensive variables are denoted by pi and are dual to the
extensive variables by the relations pi =

∂E
∂xi or pi =

∂S
∂xi ,

depending on the choice of thermodynamic potential 1 .
The thermodynamic phase space (TPS) is the (2n +
1)-dimensional vector space endowed with the canonical
contact structure

θ = dx0 +

n∑
i=1

pidx
i.

Definition 1. A one-form θ on a 2n+1-dimensional mani-
fold M is a contact form if θ∧ (dθ)n �= 0 is a volume form.
Then the pair (M, θ) is called a contact manifold.

For a given set of canonical coordinates and any partition I
and J of the set of indices {1, . . . , n}, for any differentiable
function φ(xI , pJ) of n variables, i ∈ I, j ∈ J , the formulas

1 Generally speaking, any thermodynamic potential could be used,
internal energy, entropy, Helmholtz free energy, or the Gibbs free
energy. Those representations are related by Legendre transforma-
tions (?). The proper choice of a potential depends on the particular
problem at hand. We do not make a particular choice here and in
the sequel, and the thermodynamic potential is denoted by φ(x).

x0 = φ−
∑
i∈I

pi
∂φ

∂pi

xi =− ∂φ

∂pi
, i ∈ I,

pj =
∂φ

∂xj
, j ∈ J, (1)

define a Legendre submanifold Lφ of R2n+1.

An important object to be studied in our context is the
vector field governing the dynamics of a system in the TPS.

Definition 2. A (smooth) vector field X on the contact
manifold M is a contact vector field with respect to a
contact form θ if and only if there exists a smooth function
ρ ∈ C∞(M) such that

LXθ = ρθ,

where LX · denotes the Lie derivative with respect to the
vector field X. It is called a strict contact vector field if
ρ = 0.

The problem considered in (Ramirez et al., 2013a; Maschke,
2016) is to study controlled balance equation system of the
form

dx

dt
= f(x, φx) +

p∑
j=1

gj(x, φx)uj , (2)

where the gradient of the thermodynamic potential φ(x),
∂φ
∂x , is denoted by φx. The approach proposed in (Ramirez
et al., 2013a; Maschke, 2016) first considers the lift of the
controlled balance system (2) to the complete Thermo-
dynamic Phase Space by defining the following contact
Hamiltonian functions:

K0 = (φx − p)T f(x, φx) (3)

Kj
C = (φx − p)T gj(x, φx). (4)

By construction, the contact vector field XK , generated by
the function K = K0+

∑p
j=1 K

j
C , leaves invariant the Leg-

endre submanifold Lφ generated by the thermodynamic
potential φ(x), defined as

Lφ = {x0 = φ(x), x = x, p = φx, x ∈ Rn}. (5)

To every function K, there corresponds the contact vector
field XK given as

XK =

(
K −

n∑
i=1

pi
∂K

∂pi

)
∂

∂x0
+

∂K

∂x0

(
n∑

i=1

pi
∂

∂pi

)

+

n∑
j=1

(
∂K

∂xj

∂

∂pj
−

∂K

∂pj

∂

∂xj

)
. (6)

The corresponding dynamical system in the contact phase
space is given as
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