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Abstract: Human trust in automation plays an important role in successful interactions
between humans and machines. To design intelligent machines that can respond to changes in
human trust, real-time sensing of trust level is needed. In this paper, we describe an empirical
trust sensor model that maps psychophysiological measurements to human trust level. The use of
psychophysiological measurements is motivated by their ability to capture a human’s response
in real time. An exhaustive feature set is considered, and a rigorous statistical approach is
used to determine a reduced set of ten features. Multiple classification methods are considered
for mapping the reduced feature set to the categorical trust level. The results show that
psychophysiological measurements can be used to sense trust in real-time. Moreover, a mean
accuracy of 71.57% is achieved using a combination of classifiers to model trust level in each
human subject. Future work will consider the effect of human demographics on feature selection
and modeling.
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1. INTRODUCTION

Motivation and Problem Definition: Advances in sensing,
communication, and control systems have spurred the de-
velopment of a number of smart systems and services.
Increasing levels of automation have resulted in humans
being displaced as the primary decision-maker in roles
such as power plant operators and aircraft pilots (Jian
et al., 2000). Additionally, in what are broadly being called
Human-Agent Collectives, we expect to see a growing need
for cooperation between humans and machines in a variety
of situations, including disaster relief (Jennings et al.,
2014; Sadrfaridpour et al., 2016). It is well established that
human trust in automation is central to successful interac-
tions between humans and machines (Yagoda and Gillan,
2012; Lee and See, 2004; Sheridan and Parasuraman,
2005). Here, machine refers broadly to any automated
system, such as an autonomous robot or a process control
system in a power plant. Therefore, we are interested in
using feedback control principles to design machines that
are capable of responding to changes in human trust level
in real-time. However, in order to do this, we require a
sensor for measuring human trust level online.

Trust itself can be classified into three categories: dispo-
sitional, situational, and learned (Hoff and Bashir, 2015).
Dispositional trust refers to the component dependent on
demographics (e.g. gender, culture) whereas situational
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and learned trust depends on time-varying factors such as
task difficulty, self-confidence, and experience. Therefore,
situational and learned trust factors influence real-time hu-
man decision-making during interactions with automated
systems. Researchers have attempted to predict human
trust using dynamic models that rely on the experience
and/or self-reported behavior of humans (Lee and Moray,
1992; Jonker and Treur, 1999). However, it is not practical
to use human self-reported behavior as a feedback control
variable. An alternative is the use of psychophysiologi-
cal signals to sense trust level (Riedl and Javor, 2012).
While these measurements have been correlated to human
trust level, they have not been studied in the context of
real-time trust sensing.

Background on Psychophysiological Measurements and
Trust: There are several psychophysiological measure-
ments that have been studied in the context of human
trust. We focus here on electroencephalography (EEG)
and galvanic skin response (GSR). EEG is an electro-
physiological measurement technique that captures the
cortical activity of the brain (Handy, 2005), and a powerful
technique to observe brain activity in response to a specific
event is through an event-related potential (ERP). An
ERP is determined by averaging repeated responses over
many trials to eliminate random brain activity (Handy,
2005). GSR is a classical psychophysiological signal that
captures arousal based upon the conductivity of the sur-
face of the skin. It has been used in polygraph tests for
many decades (Grubin and Madsen, 2005).

Some researchers have studied trust via EEG, especially
with ERPs. Boudreau et al. (2008) found a difference in
peak amplitudes of ERP components in human subjects
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while they participated in a coin toss experiment that
stimulated trust and distrust. Long et al. (2012) further
studied ERP waveforms with feedback stimuli based on
a modified form of the coin toss experiment conducted
by Boudreau et al. (2008). The decision-making in the
‘trust game’ (Ma et al., 2015) has also been used to
examine human-human trust level. Finally, researchers
have examined GSR in correlation with human trust level.
Khawaji et al. (2015) found that the average of GSR
values, and the average of peaks of GSR values, are
significantly affected by both trust and cognitive load in
the text-chat environment.

Gaps in Literature: Although ERPs could show how the
brain functionally responds to a stimulus, they are event
triggered. It is difficult to identify triggers during the
course of an actual human-machine interaction thereby
rendering ERPs impractical for real-time trust level sens-
ing. In addition, the use of GSR for measuring trust
has not been explored. A fundamental gap remains in
determining a static mathematical model that maps psy-
chophysiological signals to human trust level and that is
suitable for real-time sensing.

Contribution: In this paper we present a human trust sen-
sor model based upon real-time psychophysiological mea-
surements, primarily GSR and EEG. The model is based
upon data collected through a human subject study and
the use of classification algorithms to map continuous data
to a categorical trust level. The proposed methodology for
real-time sensing of human trust level will enable machine
algorithm design aimed at improving interactions between
humans and machines.

Outline: This paper is organized as follows. Section 2
introduces the experimental procedure and data acquisi-
tion. The methodology for data analysis is described in
Section 3. The sensor modeling and classification results
are presented and discussed in Section 4, followed by
concluding statements in Section 5.

2. HUMAN SUBJECT STUDY

Prior investigation of human trust with respect to psy-
chophysiological response has relied on experiments that
do not mimic realistic human-machine interaction (HMI)
scenarios (Boudreau et al., 2008; Long et al., 2012). We
believe that the use of an experiment in a simple HMI
context will result in trust models that are more broadly
applicable. Thus we propose the following experiment that
elicits human trust dynamics with respect to machines.

Participants: Thirty-one adults (20 males) from West
Lafayette, Indiana (USA), aged 18-43 years participated
in our study. All participants were healthy and one was
left-handed. The group of participants were diverse with
respect to their age, gender, major, and cultural back-
ground (i.e. nationality). The compensation was $15 per
hour for their participation and each participant signed the
informed consent form. The Institutional Review Board at
Purdue University approved the study.

Stimuli and Procedures: When a participant came to the
laboratory, we asked them to respond to a scenario in
which they would be driving a car equipped with an
image processing sensor. The algorithm used in the sensor

1

Fig. 1. Participants were randomly assigned to one of the
two groups. The ordering of the three experimental
sections (databases), composed of reliable and faulty
cases, were counterbalanced across groups.

would detect obstacles on the road in front of the car
and the participant would need to repeatedly evaluate the
algorithm report. We specifically informed the participant
that the algorithm for image processing was in beta testing
and that they would need to make their judgment of trust
or distrust based on their experience with the algorithm.

There were two stimuli (obstacle detected and clear road).
Both stimuli had a 50% probability of occurrence. Partici-
pants had the option to choose ‘trust’ or ‘distrust’ after
which they received feedback of ‘correct’ or ‘incorrect’.
The trials were divided into two categories: reliable and
faulty. In reliable trials, the algorithm correctly identified
the road condition, which was in fact the stimuli. From the
participant’s perspective, this meant that choosing ‘trust’
would be marked as correct and choosing ‘distrust’ would
be marked as incorrect. For the faulty trials, there was a
50% probability that the algorithm incorrectly identified
the road condition.

Each participant completed 100 trials, along with four
practice trials in the beginning of the study. The trials
were divided into three phases, called databases in the
study, as shown in Fig. 1. In database 3, the accuracy of
the algorithm was switched between reliable and faculty
according to a pseudo-random binary sequence (PRBS) in
order to excite all possible dynamics of the participant’s
trust response. Figure 2 shows the sequence of events
in a single trial. We validated the experimental design
by collecting responses from 209 online participants (112
and 97 in groups 1 and 2, respectively) using Amazon
Mechanical Turk (Amazon, 2005). The experiment elicited
expected trust responses based on the aggregated data as
shown in Fig. 3.

EEG Recording and Pre-processing: EEG, sampled at
256 Hz, was recorded from 9 scalp sites (Fz, Cz, POz,
F3, F4, C3, C4, P3, and P4 based on the 10-20 system)
using the B-Alert X10 EEG headset (Advanced Brain
Monitoring, CA, USA) via iMotions (iMotions, Inc., MA,
USA). All EEG channels were referenced to the mean
of the left and right mastoids. The surface of the scalp
and the mastoids were cleaned with 70% isopropyl alcohol
wipes. Conductive electrode cream (Kustomer Kinetics,
CA, USA) was then applied to each electrode including
the reference. The contact impedance between electrodes
and skin was kept to a value less than 40 kΩ.

Automatic decontaminated signals provided by the EEG
system were used for model training and validation; that
is to say, effects from electromyography, electrooculogra-
phy, spikes, saturations, and excursions were minimized.
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