ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC-PapersOnLine 49-32 (2016) 095-100

Extraction and Deployment of Human
Guidance Policies

Andrew Feit and Bérénice Mettler

Department of Aerospace Engineering and Mechanics, University of
Minnesota, Minneapolis, MN 55455 (e-mail: feit0003@Qumn.edu and
mettler@umn.edu)

Abstract:

Robust and adaptive human motion performance depends on learning, planning, and deploying
primitive elements of behavior. Previous work has shown how human motion behavior can be
partitioned at subgoal points, and primitive elements extracted as trajectory segments between
subgoals. An aggregate set of trajectory segments are described by a spatial cost function and
guidance policy. In this paper, Gaussian process regression is used to approximate cost and
policy functions extracted from human-generated trajectories. Patterns are identifying in the
policy function to further decompose guidance behavior into a sequence of motion primitives.
A maneuver automaton model is introduced, simplifying the guidance task over a larger spatial
domain. The maneuver automaton and approximated policy functions are then used to generate
new trajectories, replicating original human behavior examples.
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1. INTRODUCTION
1.1 Motivation

Humans and animals routinely generate a wide range of
adaptive and robust motion behavior in cluttered and
dynamic environments. Their behavior far exceeds the
capabilities of autonomous systems, despite also having
sensory and computational limitations. Understanding the
processes that allow agents to learn and generate this be-
havior would be a significant advancement for autonomous
vehicle performance and human-machine system interac-
tion.

From a control theory perspective, guidance behavior can
be defined by a value function and guidance policy. Kong
and Mettler (2013) and Feit and Mettler (2015) pro-
pose that human guidance behavior is also described by
value and policy functions. Lee et al. (1976) and Mettler
et al. (2014) suggest that humans generate motion by
deploying sensory-motor interaction patterns. Interaction
patterns extend the motion-primitive automaton concept
introduced by Frazzoli et al. (2005) by introducing guid-
ance primitives. Guidance primitives are discrete agent-
environment interaction elements. An agent can deploy
a series of guidance primitives chosen from a library of
learned elements. Each element optimizes closed-loop per-
ception and action behavior performance.

The present work focuses on identifying, representing,
and deploying human motion guidance policies. First,
we approximate cost and guidance policy functions that
describe an ensemble of human example behavior. Second,
we use the identified guidance policy to generate new
unconstrained and constrained trajectories to validate the

use of subgoals and motion primitives as elements of
human behavior. Modeling human motion policy that
optimize a value function is a necessary precursor to
modeling perception-action guidance primitives in future
work.

2. RELATED WORK
2.1 Invariants in Human Behavior

Previous work investigates the guidance process by iden-
tifying patterns in human behavior. Simon (1972) in-
troduced satisficing, which encompasses approaches that
simplify or reduce the problem domain, in exchange for
reducing solution optimality. In addition, Simon (1990)
observes patterns in agent-environment interaction that
simplify the guidance task. Specifically, Simon notes that
elements of human motion behavior can be described by
the maintenance of invariants between perceptual and
kinematic quantities. Finally, Lee et al. (1976) suggests
that biological motion is composed of primitive elements,
which are described by a 7 parameter, the instantaneous
time of a motion gap closure. Motion profiles are generated
by maintaining a constant 7.

Human Guidance Models Mettler and Kong (2012) inte-
grates these concepts by introducing a hierarchical model
for human guidance. This model suggests that human
behavior consists of planning, perceptual guidance, and
tracking. In this model, planning involves choosing a se-
quence of subgoal states. Perceptual guidance involves
deploying primitive elements of motion and perception to
reach each subgoal. Tracking involves regulating system-
environment dynamics to implement a motion primitive
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element. Kong and Mettler (2013) and Mettler et al. (2014)
show that guidance primitives consist of sensory-motor
interaction patterns that achieve desired motion perfor-
mance and risk. Prior work on guidance (Feit and Mettler
(2016)) explored closed-loop modes between perceptions
and actions provided by interaction patterns.

Motion Primitive Maneuver Automaton  Frazzoli et al.
(1999) and Frazzoli et al. (2002) introduce the maneuver
automaton (MA), which is a finite-state approximation of
system dynamics. A MA generates complex trajectories
by constructing a sequence of motion primitive elements.
Motion primitives are chosen from a library of known
behaviors consisting of, for example, trim and maneuver
elements. Mettler et al. (2002) evaluates this approach in
the application of aerobatic rotorcraft control.

To identify motion primitives in human behavior, Li and
Mettler (2015) investigates the dynamic clustering of sur-
gical motion. This provides an approach to classifying ob-
served behavior into specific motion primitive groups. MA
approaches require dynamic programming to choose an
optimal sequence of motion primitives to complete a task
in a constrained environment. Feit et al. (2015) proposes
a human-inspired approach to constrained optimal control
based on choosing a series of subgoal states. Subgoal can-
didates are defined by a set of necessary conditions, based
on constraint geometry and a known guidance policy.

Control Theory and Human Guidance In control the-
ory, a value function V(x) specifies the cost accrued by
following a policy, m(x) beginning at state x = [zp, Ty],
partitioned into configuration and velocity states, x, and
2. Kong and Mettler (2011) observes that configuration
(xp) and velocity (x,) dynamics can be partitioned as
&p = x, and &, = f(z,,u). In this case, the guidance
policy defines the optimal velocity at a given configura-
tion, x} = m(x,). The value function is then defined over
the configuration space, V*(z,), as the spatial cost-to-
go. Kong and Mettler (2013) models the spatial cost-to-
go (CTG) and guidance policy (also termed the velocity-
vector-field (VVF)) for an ensemble of third-person con-
trol tasks involving guiding a model-helicopter through an
obstacle field. Feit and Mettler (2015) performs a similar
experiment using a first-person computer simulated en-
vironment. Both experiments show that the ensemble of
resulting trajectories can be partitioned based on subgoal
properties defined by Kong and Mettler (2013). The re-
sulting sets of trajectory segments between subgoals are
modeled by consistent CTG and VVF functions, using
time-to-go as the cost function.

Guidance Policy Representation  Kong and Mettler
(2013) and Feit and Mettler (2015) observe that a li-
brary of human motion primitives are described by a
spatial CTG and VVF function, which together form a
control policy. Russell et al. (2003) summarizes a variety
of approaches to learning or identifying cost and policy
functions from a set of example behavior data. A utility
function can be directly approximated when the value
function is known along each example trajectory. A data
regression method estimates V*(x,) ~ V*(x,), based on a
set of observed example data D = [xp, w|. This approach
approximates observed behavior, with observed cost w.

Reinforcement learning (RL) can be used to determine
an optimal guidance policy from a set of (possibly sub-
optimal) example data. Temporal difference (TD) learning
identifies the optimal cost function if rewards are known
for each state transition. This approach iterates a Bellman-
like update equation to converge to the optimal cost
function. Q-learning also uses an iterative equation, but
determines the expected value of each action at each
system state, determining both the CTG and optimal
policy.

The above approaches to utility function learning require a
known reward function of state transitions, which is often
not available for human behavior. Inverse reinforcement
learning seeks to determine a utility function, given a set of
example behavior that is assumed to be optimal. Ng et al.
(2000) summarizes algorithms available for this process.

Function Approximation A regression method is re-
quired to represent estimated CTG and guidance policy
functions over the spatial domain. This method should
be parameter-free, and not be restricted to any specific
function type. In addition, the method should provide
accuracy of the function value at evaluated points, to
elucidate the role of uncertainty in human decision making.
Gaussian process (GP) regression is employed to meet
these requirements, as described in Ebden (2008). Note
that GP regression has been extended for use in a TD
learning framework in Engel et al. (2003). The GPStuff
toolbox for Matlab is used in this work to implement
function approximation (Vanhatalo et al. (2013)).

2.2 Summary

The rest of the paper is organized as follows. Sec. 3 defines
the guidance task, and introduces an experimental frame-
work used to observe human guidance behavior. Second,
Sec. 4 describes the decomposition of observed behavior
into primitive elements, which are then described by a
policy function and a maneuver automaton model. Next,
Sec. 5 shows the application of this model to generate new
autonomous trajectories based on the observed example
behavior. Finally, Sec. 6 contains concluding remarks.

3. APPROACH

Modeling guidance behavior using a policy function links
human behavior with control theory. The guidance policy
investigation begins with defining the guidance task.

3.1 Guidance Task

This work focuses on the perceptual guidance process
within the hierarchical model of human control, introduced
by Mettler and Kong (2012) and Mettler et al. (2014). The
perceptual guidance process generates motion between
subgoal states based on perception of the environment.
In a motion guidance task, an agent must determine a
control sequence u(t) that drives a dynamic system, & =
f(z,u), from a start state z(to) to a goal state z(t,), while
satisfying constraints c(z,u) > 0. A solution control se-
quence depends on agent-environment dynamics f (-, -) and
environment structure c¢(-). Warren (2006) expresses the
interaction between perception and guidance by coupling
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