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Abstract: The high complexity of integrated processing plants makes it a hard problem for
managers and operators to find the best operational strategy. And it becomes even more difficult
when they have to deal with more than one criterion for optimality because trade-offs between
conflicting goals have to be taken into account. Usually optimisation problems are set-up with
a single objective function, where several criteria are compressed into one figure by weighting
factors. Thus, the result is a single number without any leeway in decision making. In contrast,
multi-criterial optimisation reveals the room for manoeuvre. Since the plant personnel have to
balance several requirements in order to run the plant in an “optimal” fashion, we propose to
use multi-criterial optimisation to assist them in their daily decisions.
A prototypical tool was developed and the approach is applied to a real-world problem; a
Butadiene plant in combination with cooling towers. The Butadiene plant consists of distillation
columns and consumes a solvent, heating steam and cooling water, the cooling towers consume
electric power. Thus, the criteria for the optimisation are the minimisation of these utilities.
As they are interchangeable to some extent, conflicting goals appear naturally and the multi-
criterial optimisation reveals the important interdependencies.
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1. INTRODUCTION

The foundation for decision support systems was laid in
the 1960s and the domain evolved strongly in the following
decade (Shim et al., 2002). In the 1970s the combination of
decision support systems and multi-criterial optimisation
(MCDSS) gained attention in the research community
(Korhonen et al., 1992). The reason is that many real
world problems involve the optimisation of several, often
competing, objectives (Fonseca and Fleming, 1993). With
the standard approach to integrate these criteria in a single
objective function using weighting factors (e.g. money),
the view on the problem becomes quite narrow, the op-
timisation will provide only one solution, considering it
to be the best achievable performance. In contrast, multi-
criterial optimisation leads to a set of points that depict
the inherent flexibility of the system and provide insight
into the problem for the decision maker.

A general optimisation problem involving more than one
objective (vectorial optimisation) can be defined as shown
in (1). The aim is the simultaneous minimisation of the

� The research leading to these results was done within the project
MORE (Real-time Monitoring and Optimization of Resource Effi-
ciency in Integrated Processing Plants). The project has received
funding from the European Unions Seventh Framework Programme
for research, technological development and demonstration under
grant agreement No 604068.

vector function y in M dimensions under inequality and
equality constraints (g and h) as well as lower and upper
bounds on the decision variables x.

min y = (f1(x), f2(x), . . . , fM (x))T ,
s.t. gj(x) ≥ 0, j = 1, 2, . . . , J,

hk(x) = 0, k = 1, 2, . . . ,K,
xL
i ≤ xi ≤ xU

i , i = 1, 2, . . . , N.

(1)

There might be one solution that outperforms all other
and thus would be the truly optimal solution. But in
many real-life problems the objectives are competing and
improvements in one criterion lead to deteriorations of
other objectives. Therefore, it is reasonable to generate
a set of solutions that represents good compromises.

Related to this set, there is the basic concept of Pareto-
optimal solutions. These points in the multidimensional
solution space are characterised by the fact that no im-
provement in one criterion is possible without the degra-
dation of at least one other objective. Since these optima
are better or as good as all other feasible points, they are
called dominant. A solution y dominates another solution
y∗ (y ≺ y∗) iff it is equally good (or better) in all and
really better in at least one criterion as shown in (2).
The aggregation of all Pareto-optimal solutions forms the
Pareto frontier, which depicts the trade-offs between the
objectives and reveals important interdependencies.
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Abstract: The high complexity of integrated processing plants makes it a hard problem for
managers and operators to find the best operational strategy. And it becomes even more difficult
when they have to deal with more than one criterion for optimality because trade-offs between
conflicting goals have to be taken into account. Usually optimisation problems are set-up with
a single objective function, where several criteria are compressed into one figure by weighting
factors. Thus, the result is a single number without any leeway in decision making. In contrast,
multi-criterial optimisation reveals the room for manoeuvre. Since the plant personnel have to
balance several requirements in order to run the plant in an “optimal” fashion, we propose to
use multi-criterial optimisation to assist them in their daily decisions.
A prototypical tool was developed and the approach is applied to a real-world problem; a
Butadiene plant in combination with cooling towers. The Butadiene plant consists of distillation
columns and consumes a solvent, heating steam and cooling water, the cooling towers consume
electric power. Thus, the criteria for the optimisation are the minimisation of these utilities.
As they are interchangeable to some extent, conflicting goals appear naturally and the multi-
criterial optimisation reveals the important interdependencies.

Keywords: Decision Support Systems, Multiobjective Optimisation, Genetic Algorithms,
Chemical Industry

1. INTRODUCTION

The foundation for decision support systems was laid in
the 1960s and the domain evolved strongly in the following
decade (Shim et al., 2002). In the 1970s the combination of
decision support systems and multi-criterial optimisation
(MCDSS) gained attention in the research community
(Korhonen et al., 1992). The reason is that many real
world problems involve the optimisation of several, often
competing, objectives (Fonseca and Fleming, 1993). With
the standard approach to integrate these criteria in a single
objective function using weighting factors (e.g. money),
the view on the problem becomes quite narrow, the op-
timisation will provide only one solution, considering it
to be the best achievable performance. In contrast, multi-
criterial optimisation leads to a set of points that depict
the inherent flexibility of the system and provide insight
into the problem for the decision maker.

A general optimisation problem involving more than one
objective (vectorial optimisation) can be defined as shown
in (1). The aim is the simultaneous minimisation of the

� The research leading to these results was done within the project
MORE (Real-time Monitoring and Optimization of Resource Effi-
ciency in Integrated Processing Plants). The project has received
funding from the European Unions Seventh Framework Programme
for research, technological development and demonstration under
grant agreement No 604068.

vector function y in M dimensions under inequality and
equality constraints (g and h) as well as lower and upper
bounds on the decision variables x.

min y = (f1(x), f2(x), . . . , fM (x))T ,
s.t. gj(x) ≥ 0, j = 1, 2, . . . , J,

hk(x) = 0, k = 1, 2, . . . ,K,
xL
i ≤ xi ≤ xU

i , i = 1, 2, . . . , N.

(1)

There might be one solution that outperforms all other
and thus would be the truly optimal solution. But in
many real-life problems the objectives are competing and
improvements in one criterion lead to deteriorations of
other objectives. Therefore, it is reasonable to generate
a set of solutions that represents good compromises.

Related to this set, there is the basic concept of Pareto-
optimal solutions. These points in the multidimensional
solution space are characterised by the fact that no im-
provement in one criterion is possible without the degra-
dation of at least one other objective. Since these optima
are better or as good as all other feasible points, they are
called dominant. A solution y dominates another solution
y∗ (y ≺ y∗) iff it is equally good (or better) in all and
really better in at least one criterion as shown in (2).
The aggregation of all Pareto-optimal solutions forms the
Pareto frontier, which depicts the trade-offs between the
objectives and reveals important interdependencies.

1st IFAC Conference on Cyber-Physical & Human-Systems
December 7-9, 2016. Florianopolis, Brazil

Copyright@ 2016 IFAC 124

Industrial Application of Multi-criterial
Decision Support to improve the Resource

Efficiency �

Daniel Ackerschott ∗ Benedikt Beisheim ∗∗ Stefan Krämer ∗∗
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Fig. 1. Scheme of the combined models

y ≺ y∗ : ∀i ∈ 1, . . . ,M : yi ≤ y∗i ∧
∃j ∈ 1, . . . ,M : yj < y∗j

(2)

2. DESCRIPTION OF THE CASE STUDY

As a case study the combination of a cooling tower and a
Butadiene plant (shown in Fig. 1) has been investigated.
The optimisation goal is the reduction of the resource
utilisation, while maintaining the production rate and
product quality. In the Butadiene plant, a complex dis-
tillation process separates a mixture of raw C4 chemicals
in order to produce Butadiene as the main product. The
two models are connected via the stream of cooling water
that is provided by the cooling towers and is used in the
Butadiene plant in several condensers. Its temperature
strongly influences the overall performance of the distil-
lation columns. The Butadiene plant also is a consumer of
steam (on three different pressure levels) and of a solvent
which is necessary to perform the separation task. The
cooling towers consume electricity to power the fans. Due
to the interconnections among and within the plants, all
three resources (electricity, steam, and solvent) are partly
interchangeable. The same holds for the three steam head-
ers used in the Butadiene plant, since the distillation duty
can be shifted (slightly) between the columns.

For the cooling towers a mixed-integer non-linear problem
formulation was set-up that incorporates an external soft-
ware package for the calculation of the thermodynamics. In
this model electricity is the only resource applied, whereas
the ambient air temperature and humidity are seen as
disturbances. The simulation uses a reference state of the
towers as the starting point and calculates the difference
to this under the consideration of changes in terms of the
incoming water and the environmental conditions. Details
can be found in Beisheim et al. (2015) and MORE Project
(2015).

The Butadiene plant model is derived from an MPC
solution, which comprises two similar plants that run in
parallel, as a linear gain model (cf. (3)). The state of
the plant is denoted by y, the inputs to the plant are
x and A represents the gain matrix. For all variables
upper and lower bounds are specified. A new state is
calculated as the old state plus the gain matrix multiplied
with the difference in inputs at two points. As external
disturbances the ambient air temperature and the cooling
water temperature influence the state of the plant.

∆y = A∆x (3)

Fig. 2. Scheme of the NSGA-II algorithm (Deb et al., 2002)

3. MULTI-CRITERIAL OPTIMISATION

The multi-criterial optimisation is done by an evolutionary
algorithm (EA), which is a variant of the NSGA-II algo-
rithm (Deb et al., 2002) as implemented in MATLABs
Global Optimization Toolbox. An evolutionary algorithm
was chosen because of its applicability to a wide range of
problems. Especially when mixed-integer nonlinear prob-
lem formulations (MINLP) which are not convex, have
to be solved, evolutionary algorithms show a good per-
formance in terms of finding near-optimal solutions. Fur-
thermore, due to the fact that the cooling tower model
contains an external software (blackbox) only derivative-
free approaches are suitable to find good solutions.

The NSGA-II type algorithm is well suited for multi-
dimensional optimisation, since it fulfils the requirements
of elitism and a wide spread of the solutions along the
Pareto front. The elitism is useful to keep good candidate
solutions “alive” along the computation and therefore
to ensure that good optima are not lost. The spreading
ensures that the solutions will not focus on a small elite,
hence stay in a narrow region, but the set of solutions will
provide the full picture.

The algorithm solves the optimisation problem by a two-
stage sorting and selection of candidate solutions (cf.
Fig. 2). After the evaluation of one generation (Pt), a set
of offspring (Qt) is generated by standard operations in
EA (tournament selection, recombination, and mutation).
Both sets, the parents and the offspring, are merged and
ranked by their non-domination level (Fi). A high quality
of a solution denotes a low number of candidates that
dominates it. Solutions with the highest level dominate
all other candidates (except those at the same level).

The next generation is formed by the selection of the best
non-dominated solutions. When a non-domination level
cannot be transferred completely, due to the size limitation
per generation, the crowding distance of every solution at
this level is checked. The crowding distance describes the
average distance of one solution to its nearest neighbour
solutions, so, how crowded the surrounding is. To preserve
a wide spread along the Pareto front it is favourable to
have large distances between solutions. Again, the best
solutions are selected to complete the new generation.

4. DECISION SUPPORT

Multi-criterial decision support systems classically assist
managerial decision, but the described approach will be
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