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Abstract: In this paper, we propose a new adaptive controller for the lower leg limb motion
tracking problem that is inherent to neuromuscular electrical stimulation systems. The control
accounts for uncertainties in the system parameters by exploiting the concavity and convexity of
the model functions. The resulting control law is continuous and guarantees practical tracking
for the limb angular position and velocity. The control performance is demonstrated via a

simulation.
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1. INTRODUCTION

Neuromuscular electrical stimulation (NMES) refers to the
technology where skeletal muscles are externally stimu-
lated in order to restore functionality to human limbs
with motor neuron disorders [32]. This is accomplished via
skin or implanted electrodes which upon voltage excitation
produce muscle contraction and consequently joint torque
and limb motion. NMES is an active area of investigation
in the biomedical and rehabilitation engineering research
communities since it is a key technology for realizing neu-
roprosthetic devices.

Control of NMES systems is a challenging problem because
the muscle dynamics are nonlinear and highly uncertain.
Common approaches for generating desired limb motion
are open-loop control [7,12] and traditional feedback con-
trol (e.g., PID control). These approaches however either
fail to guarantee closed-loop stability or produce unsatis-
factory results [15,30]. An early review of NMES control
methods can be found in [2]. The application of advanced
feedback control methods is now possible due in part to
numerous studies devoted to understanding and modeling
the nonlinear physiological and mechanical dynamics of
muscle stimulation, activation, and contraction. One of
the first modeling results was Hill’s work in the 1930’s
[13]. Since then, the identification and modeling of muscle
dynamics has received considerable attention from various
research groups; see, for example, [4,6,7,9,11,17,21,28,31].
Advanced NMES control techniques include sliding mode
control [15], adaptive control [19,36], neural network con-
trol [10,29,33,35], dynamic robust control [34], time-delay
compensation [16,32], and switching control [5].

The NMES mechanical dynamics contains uncertain para-
meters that appear nonlinearly in the elastic and damping
terms, i.e., it is a nonlinearly parametrized system. This
characteristic creates obstacles for the design of adaptive

controllers since classical adaptive schemes are based on
the unknown parameters appearing linearly in the model.
As a result, most advanced NMES controllers that com-
pensate for modeling uncertainties compensate for func-
tional uncertainties; e.g., the neural network controllers
in 10,29, 33,35] and the robust-like controllers in [15,32].
One can argue that if the uncertainties are only parametric
in nature, then such controllers are an "overkill". (Note
that the adaptive controller in [19] assumes the NMES
mechanical parameters appear linearly.)

The design of adaptive controllers for nonlinearly parame-
trized systems is a nontrivial task. Since the mid 1990’s,
some researchers have labored in this area and devised
many interesting results. For example, [26] proposed an
adaptation scheme for stabilization of systems with con-
cave parameterizations. In [1], a min-max adaptive con-
troller was designed for first-order nonlinear systems with
concave/convex parameterizations which ensures racking
with prescribed precision. This result was extended in [18]
to second-order nonlinear systems with extended match-
ing. The concave/convex parameterization assumption of
[1,18] was removed in [22] to allow all nonlinear parame-
terizations where the parameters lie in a known compact
and appear through additive, continuous, scalar, nonlinear
functions. In [24], it was shown how to convexify nonlinear
parameterizations to enable the use of adaptive controllers
for convexly parameterized nonlinear systems. The work
in [8] proposed a semi-adaptive stabilization control law
for convexly parameterized systems that switches between
adaptive and robust controllers. In [25], an adaptive con-
trol for multilinearly parameterized systems was intro-
duced that combines convex and concave reparameteriza-
tions to ensure stability. A simple, adaptive stabilization
controller with a linear-in-parameter-like structure was de-
signed in [14] for systems satisfying the extended matching
condition with Lipschitzian parameterizations.
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To the best of our knowledge, the only adaptive control to
directly account for the nonlinearly-parameterized dynam-
ics of the human shank-knee joint was recently proposed
n [36]. Specifically, the design exploited the Lipschitzian
parameterization of the system model by applying the
result in [14] to compensate for parametric uncertainties.
The resulting, torque-level control input is discontinuous
and ensures asymptotic tracking for the angular position
and velocity of the lower limb movement.

In this paper, we propose an alternative solution to the
adaptive tracking control problem for the nonlinearly para-
metrized limb dynamics. Here, we take explicit advantage
of the concavity or convexity of the model functions with
respect to the nonlinear parameters. The foundation for
our design is the adaptive strategy introduced in [1, 18];
however, we introduce a few modifications to simplify the
resulting control algorithm. Since our mechanics dynamics
are of order two, we first employ a filtered tracking error
[3] to convert it into a first-order system. We also bypass
the min-max optimization procedure since our main con-
trol objective is closed-loop stability. Finally, we utilize
a simple projection algorithm on some of the parameter
estimates which facilitates the Lyapunov stability analy-
sis and control implementation. Our adaptive control is
continuous and shown to ensure practical tracking for the
angular position/velocity of the limb. A verification of the
control performance is provided in the form of a computer
simulation.

2. PRELIMINARIES

We provide the definition of convex/concave functions
along with a related Lemma.

Definition 1. A C*! function f()\) : R — R is said to be
convexr on © = [Anin, Amax] if
Flud + (1= p) A2) < pf (A1) +
and concave if
fpdi+ @ =) A2) = pnf M)+ (L —p) f(A2),  (2)
VA1, A2 € © and V,U, S [0, 1]
Lemma 1. For any C! function f(\) : R — R that is
convex on © = [Amin, Amax): |

(I=p)f(2), (1)

P Qmin) < 1A < F (Amax), VAEO (3)
where f' = df /d\. If the function is concave, then
S Amin) = f (A) = f (Amax) , VA € O. (4)
3. MODEL

We consider the musculoskeletal model for a human using
the leg extension machine from [7,9,32]:

Ji+B(q) + K (q)+G(q) =u (5)
where ¢(t) € R is the angular position of the lower leg limb
about the knee joint,

B (q) = b1q + by tanh (b3q) (6)
is the damping moment,
K (q) = k1 exp (—k2q) ¢ — k3 exp(—kaq) (7)
is the elastic moment,
G (q) = mylsin(q) (8)

1 The proof of Lemma 1 is omitted since the results can be easily
verified by graphical means.
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Fig. 1. Depiction of the lower limb with electrode stimula-
tion of the quadriceps muscle.

is the gravitational moment, u € R is the torque-level
control input generated by electrode stimulation of the
quadriceps muscles, the constant parameters J and m
represent the constant inertia and mass of the lower
limb /machine combination, respectively, and [ is the dis-
tance between the knee joint and center of the mass of the
lower limb/machine. The parameters b; and k; in (6) and
(7) are positive and constant. As shown in Figure 1, the
leg extension machine in [7,9,32] was designed with the
user in sitting position such that the vertical position for
the free-swinging lower limb is ¢ = 0, and ¢ > 0 when
the knee joint extends. Note that the human knee joint
is physically limited by |g| < /2. Also, notice that K (q)
does not vanish at ¢ = 0 because of the existence of a
non-zero, resting knee angle [7].

4. CONTROL OBJECTIVE

The control objective is to design an adaptive law u =
u(q, ¢,t) to asymptotically track any bounded C? refer-
ence trajectory gqq(t) satisfying sup|gq (t)| < 7/22 and
(ga(t), da(t)) € Loo with the constraint that all parameters
in (5)-(8) are unknown. We make the following assump-
tions about the unknown parameters of (5)-(8):

e The parameters that appear nonlinearly in the model,
i.e., ko, k4, and bs, lie in a known compact set. That
is, parameter ® € [o.i, @, ] where e, and e,y
are known positive constants.

e The upper bound on the parameters ki, k3, and bo
are known and denoted by e.,..

Our tracking objective is quantified by the tracking error
e=q—qa (9)

To facilitate the control design, we also introduce the
filtered tracking error [3]

r=¢é+ e, (10)

where p > 0 is a user-defined control gain, and the
following tuning error [1]

r
Te = T_ES(E)’

(11)

2 This condition stems from the fact that the knee joint angle cannot
go beyond +7/2.
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