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A B S T R A C T

The problem of sampled-data-based vibration control for structural systems with finite-time state constraint and
sensor outage is investigated in this paper. The objective of designing controllers is to guarantee the stability and
anti-disturbance performance of the closed-loop systems while some sensor outages happen. Firstly, based on
matrix transformation, the state-space model of structural systems with sensor outages and uncertainties ap-
pearing in the mass, damping and stiffness matrices is established. Secondly, by considering most of those
earthquakes or strong winds happen in a very short time, and it is often the peak values make the structures
damaged, the finite-time stability analysis method is introduced to constrain the state responses in a given time
interval, and the H-infinity stability is adopted in the controller design to make sure that the closed-loop system
has a prescribed level of disturbance attenuation performance during the whole control process. Furthermore, all
stabilization conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be
easily checked by using the LMI Toolbox. Finally, numerical examples are given to demonstrate the effectiveness
of the proposed theorems.

1. Introduction

In recent years, because strong earthquakes and hurricanes happen
frequently, vibration control for structural systems has received consider-
able attention, and many control methods were achieved for attenuating
those vibrations resulted from seismic or wind excitations. Normally, those
methods can be classified into three types: passive control, semi-active
control and active control. Due to the virtues of low energy consumption
and low cost, the passive and semi-active controls were ever researched
heatedly [1,2]. However, with the structural systems built higher and
higher, the stability and solidity of structural systems are challenged and
cannot be guaranteed only by those passive and semi-active control
methods. Thus, the active vibration control for structural systems has been
heatedly discussed recently, and many control strategies, such as, classical

∞H theories [3–5], energy-to-peak control [6–8], finite frequency control
[9], sliding mode control [10,11], adaptive control [12], fuzzy control
[13,14], model predictive control [15], optimal control [16], etc., have
been utilized for protecting structures subjected to seismic or wind excita-
tions. Moreover, many active control devices, such as, active mass damper
(AMD) [17,18], active brace system (ABS) [19,20], etc., were also designed
for applying those control algorithms.

However, most of the existing results are obtained on the basis of
the assumption that the sensors can provide uninterrupted signal
measurement. In practice, contingent failures are possible for all sen-
sors in a system, which may result in substantial damage, and can even
be hazardous to human and environmental security. Thus, sensor
failure is an inevitable problem which needs to be considered in the
active control devices and algorithms design. At least, the sensor fail-
ures include two major types: sensor outage and sensor performance
degradation. Sensor outage means the sensor is completely broke down;
and sensor performance degradation means the sensor can still work
with lower performances, such as lower degree of precision, higher
error rate, etc. During the last decades, some efforts have been made by
scholars to obtain the results about sensor failures, and some achieve-
ments were reached. For example, based on linear matrix inequality
(LMI) technique, the problem of sensor fault-tolerant vibration at-
tenuation controller design for uncertain buildings structural systems
was investigated in Ref. [21]. In terms of ∞H theory, Ref. [22] discussed
the problem of simultaneous design of reliable filter and fault detector
for a class of linear continuous-time systems with bounded disturbances
and nonzero constant reference inputs, and numerical example was
given to illustrate the effectiveness of the proposed methods. The
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existing results show robust analysis can solve some sensor performance
degradations greatly, however, the results about sensor outage are still
few, and it is not fully investigated, obviously.

On the other hand, with the advances in computer measurement
and control technique, the analog signals are often replaced by digital
signals to provide better performances [23]. Thus, sampled-data sys-
tems have attracted great attention, and many achievements have been
reached during the last several decades. The corresponding results can
be found in Refs. [24–27] and those references therein. Moreover, with
recent focus on wireless monitoring and control of structural systems
[28–31], research on sampled-data-based control for structural system
is becoming significant. Classical solutions to this type of problem can
be found in the literatures [8,32–34], where sampled-data control al-
gorithms taking into account external excitations were given for
structural systems, and numerical examples were given to show the
validation of those methods. However, most of those existing results
were obtained by using Lyapunov stability theory, which cases about
asymptotic convergence of structural systems. It is well known that the
structural systems are often damaged by the peak responses of dis-
placements or accelerations, thus, obtaining some results with a con-
straint on the peak responses of displacements or accelerations will be
much more practical, obviously. Very recently, the problem of finite-
time stability of systems has received considerable attention. For ex-
ample, by employing the Lyapunov-like function method, Ref. [35]
addressed the problems of input-output finite-time stability analysis for
linear time-delay systems and applied it to active vibration control for
structural systems with input delay. In terms of a special Lyapunov
functional, the finite-time vibration control of earthquake excited linear
structures with input time-delay and saturation was concerned in Ref.
[36], and numerical examples were given to illustrate the effectiveness
of the developed theory. More achievements about this issue can also be
found in Refs. [37,38] and the references therein.

This paper concerns the problem of sampled-data-based vibration
controller design for structural systems with finite-time state constraint
and sensor outage. Based on matrix transformation, the state-space
model of structural systems, which contain sampled-data signals, sensor
outage and uncertainties appearing in the mass, damping and stiffness
matrices, is established. Then, in terms of the obtained model and fi-
nite-time stability technique, the LMIs-based conditions are established
for the structural systems to be stabilizable with finite-time state con-
straint and sensor outage. By solving these LMIs, the desired controller
can be obtained such that the state responses of the closed-loop system
constrained by < >x Rx R(t) (t) c ( 0)T

3
2 during the time interval[0,T],

and the influence of the external disturbances is constrained
by < >z ωγ (γ 0)2 2 during the whole control process. Furthermore,
when sensor outages happen, the control system can reconfigure the
controllers according to the signals come from the sensor outage de-
tector. In the end, numerical examples are given to show the effec-
tiveness of the proposed theorems.

Notation. Throughout this paper, for real matrices X and Y, the
notation ≥X Y (respectively >X Y) means that the matrix −X Y is
semi-positive definite (respectively, positive definite). I is the identity
matrix with appropriate dimension, and a superscript “T” represents
transpose. We define = +M M MH T . For a symmetric matrix, ∗ denotes
the symmetric terms. The symbol Rn stands for the n-dimensional
Euclidean space, and ×Rn m is the set of ×n m real matrices.

2. Problem formulation and dynamic models

Consider an n degree-of-freedom structural system, which is de-
picted in Fig. 1. The structural model equation can be written as
[5–9,21,35,36,38,39].

+ + = +Mx Cx Kx H u H x¨ (t) ˙ (t) (t) (t) ¨ (t),m m m 0 ω g (1)

where = ⋯x (t) [x (t),x (t), ,x (t)]m m1 m2 mn
T, x (t)mn is the relative drift of the

nth storey to ground; u(t) is the control force input; ẍ (t)g is the ground
acceleration, ∈ ×H R0

n m gives the locations of these controllers,
∈ ×H Rω

n 1 is an vector denoting the influence of disturbance excitation,
and ∈ ×M C K, , Rn n are the mass, damping and stiffness matrices of the
system, respectively. From Fig. 1, it is obtained that
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Defining the state variables as =x x x(t) [ (t) , ˙ (t) ]m
T

m
T T, equation (1)

can be written in the following state-space form:
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where Cz is real constant matrix with appropriate dimensions,
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Remark 1. Some historical earthquake records are listed in Table 1
[40,41]. It is obvious that the ground accelerations and durations are all
limited in some special bounds, that is, earthquake excitations can be
described as an energy-bounded disturbance, thus, the ω(t) shown in
the paper satisfies ∈ +∞Lω(t) [0, ]2 , and for a given time interval [0,T],

Fig. 1. n degree-of-freedom structural system.

Table 1
Fundamental information of some earthquakes.

Year Observation site Peak of ground acceleration
(m/s2)

Duration (s)

1940 EI Centro, 270 Deg 3.498 53.72
1940 EI Centro, 180 Deg 2.099 53.46
1952 Taft Lincoln School 1.526 54.38
1966 Parkfield Cholame, Shandon 2.323 26.18
1971 San Fernando, 69 Deg 3.091 61.84
1971 San Fernando, 159 Deg 2.652 61.88
1979 James RD., 220 Deg 3.600 37.68
1989 Loma Prieta, 270 Deg 2.704 39.98
1994 Northridge, 90 Deg 5.926 59.98
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