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a b s t r a c t

This work presents a novel methodology for Sub-Optimal Excitation Signal Generation and Optimal Param-

eter Estimation of constrained nonlinear systems. It is proposed that the evaluation of each signal must

also account for the difference between real and estimated system parameters. However, this metric is not

directly obtained once the real parameter values are not known. The alternative presented here is to adopt

the hypothesis that, if a system can be approximated by a white box model, this model can be used as

a benchmark to indicate the impact of a signal over the parametric estimation. In this way, the proposed

method uses a dual layer optimization methodology: (i) Inner Level; For a given excitation signal a nonlinear

optimization method searches for the optimal set of parameters that minimizes the error between the out-

puts of the optimized and benchmark models. (ii) At the outer level, a metaheuristic optimization method is

responsible for constructing the best excitation signal, considering the fitness coming from the inner level,

the quadratic difference between its parameters and the cost related to the time and space required to exe-

cute the experiment.

© 2018 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Obtaining a suitable mathematical model of Nonlinear Dynamic

System (NDS) — the plant model — is of fundamental importance

to both synthesis and tuning of any robust model-based observer or

controller [1]. Furthermore, the model is necessary for carrying out

both the (analytical) stability assessment and the (numerical) system

performance assessment [2–5]. Such a light-gray-box model — dif-

ferential equations with parameter estimation — has to satisfactorily

reproduce the dynamical behavior of a plant.

In this way, parameters estimation of nonlinear systems has been

extensively investigated in the literature as described in Refs. [6–10].

There are several methods proposed in the literature such as opti-

mization techniques, neural networks [11], Fuzzy [12], and others

[13]. A full description of these methods, as well as their limitations

and advantages, can be found in Ref. [14].

However, one common drawback for any Optimal Parameter Esti-

mation (OPE) methodology is the necessity of an input signal that

presents some properties such as: (i) its generation must be trivial,
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(ii) it must consider boundaries and safety, and (iii) it must provide

a rich excitation to estimate the system’s dynamics [8,14–16]. Due

to these facts it is common that the Optimal Parameter Estimation

(OPE) techniques are coupled with Optimal Input Design (OID).

As for the problem of combined Optimal Input Design (OID) with

Optimal Parameter Estimation (OPE), several contributions have

been made to the literature since the early 1960’s [15,17,18]. It has

been shown that step-like signals such as (Amplitude-modulated)

Pseudo-Random Binary Signal((A)PRBSs) [4,5] are much richer than

the sum of a multitude of sinusoidal signals, therefore more likely

being persistently exciting [5,17]. Sufficiently informative data can

be raised through the use of persistently exciting signals of appropri-

ate order [19]. It has also been shown that it is always better to excite

all the inputs simultaneously [19,20], either in open- or closed-loop

parameter estimation frameworks.

Reference [21] shows a Lagrangian-based optimization method-

ology but it only directly applies constraints to the input variables,

the output is constrained by predicting the maximum input space

envelope without violations. In rigid body dynamics the computa-
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tional complexity of such approach would be inviable.

There are other references that deal with Optimal Input Design

[22–24] with constraints only over the body frame. Their focus is the

system’s operational limits; they do not consider conditions such as

minimum space and time to run de experiment. In fact, to the best of

our knowledge, there is no work in literature for such purpose. How-

ever, this is an important aspect in situations where tests must be

carried out in restricted spaces or considering plants that demands a

considerable amount of time and money to be deployed and tested,

such as deep water Remotely Operated Vehicles (ROVs) [25].

Another important observation is that those works approximate

the non-differentiable input signals into a series of differentiable

functions in order to use gradient-based optimization techniques.

However, from an optimization perspective [26,27], to turn discrete

variables into continuous ones tends to provide poor results.

Under the aforementioned background this work presents a new

approach for generating persistently-exciting signals for Optimal

Parameter Estimation (OPE) of constrained NDSs. It is based on the

fact that, ideally a methodology should be able to start by finding the

best parameter set that minimizes the output error between a para-

metric optimized model and the real system. This result would deter-

mine a Light-Gray Box Model (LGBM) of the real system. However, as

stated before, although the excitation signal has a major impact over

the correct parameter estimation, it is not possible to directly eval-

uate how good a resulting Light-Gray Box Model (LGBM) represents

the real system.

Therefore, an important contribution of this work is the formula-

tion of the following hypothesis; “if it is possible to generate a White

Box Model (WBM) of a nonlinear system, it is also possible to use this

White Box Model (WBM) as the benchmark and evaluate if a given sig-

nal is rich enough to estimate the desired parameters. If so, the same

signal may be used on the real system to estimate its parameters”. This

hypotheses assumes that if a system can just be reasonably modeled

as a White Box Model (WBM), its behavior — even not perfectly —

may represent the real system dynamics. By adopting this hypoth-

esis, it is now possible to use a White Box Model (WBM), which

has well known parameters, as a benchmark to emulate the real

system. Now, it would be also possible to use an optimized Light-

Gray Box Model (LGBM) to evaluate a given signal by comparing

the resulting parameters with those of the benchmark systems. This

approach would be able to provide both excitation signal and the

system parameters. Furthermore, it would be also possible to include

constraints in the optimization formulation that would allow to keep

the system under desirable limits during the real world experiment.

The solution consists of a dual layer optimization strategy where

the inner layer is responsible for finding the best parameter set that

minimizes the output error between the optimized Light-Gray Box

Model (LGBM) and the benchmark White Box Model (WBM) system.

The outer layer is responsible to evaluate the effectiveness of each

signal used at the inner layer by using three metrics: a) the error

fitness provided by the inner layer, b) space constraint, safety and

cost to execute the signal, and c) the parametric error between the

optimized and real system.

Due to the problem characteristics, its solution adopts two dif-

ferent optimization algorithms. Regarding the inner layer process,

although literature shows several works using Least Square [28–31]

to estimate the parameters, this work uses the Safety Barrier Inte-

rior Point algorithm [32] due to its superior mathematical stability

and faster convergence time. As any other Lagrangian-based method,

it enables the analysis of both Lagrange multipliers and slack vari-

ables. As for the outer layer, it is responsible for generating and eval-

uating the input signal through a multiple-criteria penalty function

composed by the metrics mentioned above. For this stage literature

shows that dynamic optimization [33] and population-based meth-

ods such as particle swarm optimization (PSO) [34]. This paper will

also use a PSO-like algorithm adding three different evolutionary

operators in order to avoid local-optima. This strategy is based on

[35].

To demonstrate the proposed framework, this work is divided in

two parts. The first part is dedicated to the problem formulation and

the presentation of a practical tutorial Case. The second part focus

is on sensibility, convergence and an interactivity study through the

verification and discussion of several scenarios.

This paper consists of the first part, and it is organized as fol-

lows; the concepts, ideas and propositions are presented in Section

2; the metrics and the inner layer are shown in Section 3; the outer

layer optimization methodology is shown in Section 4; the results in

Section 5; and the conclusions in Section 6.

2. Suboptimal Excitation Signal Generation and Optimal

Parameter Estimation (SESGOPE)

2.1. Preliminary discussion

Consider that the real system(𝚪) is an underwater robot such as

[25,36] and must be approximated by a non-linear parametric model

(𝚪̂) where 𝚪 is the set of real and unknown parameters and 𝚪 is

its estimation. Consider also that yr and ym are the output signal his-

tories from the real and modeled systems respectively. The estima-

tion of 𝚪̂ can be done by using an excitation signal u over (𝚪) and

trying to minimize ∥yr −ym∥. However, several considerations must

be made. For example, if the experiment must be carried out in a

closed environment, then that u must be carefully designed in order

to keep the desired operating limits such as velocity, position, depth,

etc. Moreover, u must also encode the correct frequency and ampli-

tude response to estimate 𝚪̂. For instance, if the frequency of u is

much higher or lower than the one that drives the dynamics of (𝚪),
the parameters will not be well estimated [8,14]. Similarly, if the sig-

nal amplitude is not properly chosen, non-linearities such as thruster

saturation, viscous friction and added mass could not be captured.

The problem, then, is to find a signal u that is able to correctly

identify all specified parameters while keep the experiment under

desirable operating limits. However, even though it is possible find

a signal ui that allows to find a parameter estimative 𝚪i that keeps

all desired limits, it is not possible to ensure that (𝚪) ≡ (𝚪̂i) for

other signals. Moreover, the only way to test it would be using sev-

eral other signals, which is inviable in most real cases.

Alternatively, it is possible to design a white box model (𝚪̂−)
from (𝚪), where 𝚪̂− is an initial parameter estimation and use this

model as a benchmark system. Thus, it is also possible to use a signal

ui and obtain an estimative (𝚪̂𝐢) that minimizes the error between

the output of both estimated and benchmark systems. Moreover, it

is also possible to design an optimization problem where the objec-

tive function is, for instance, minimize ‖𝚪̂𝐢 − 𝚪−‖ and the constraints

are time and desirable operational limits. Finally, if ui can be used to

correctly estimate 𝚪̂−, then it should be also good for estimating the

parameters of (𝚪).

2.2. Mathematical presentation

Consider the an (NDS) (𝚪) that can be satisfactorily approxi-

mated by a nonlinear parametric model(𝚪̂) with n states, p inputs,

m outputs, and r parameters, which is defined as

(𝚪̂) ≔
{

ẋ(t) = f (x(t),u(t),𝚪)
y(t) = h(x(t),u(t),𝚪)

(1)

with initial state x0 = x (0), where x(t) ∈ ℝn |x(t) =
[ x1(t), x2(t), …, xn(t) ]T is the state vector, u(t) ∈ ℝp |u(t) =
[ u1(t), u2(t), …, up(t) ]T is the input vector, y(t) ∈ ℝm |y(t) =
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