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a b s t r a c t

In Dynamic Matrix Control (DMC) algorithm, the control signal is computed optimally based on the
process model. In effect, the DMC algorithm allows for obtaining a better quality of control than con-
ventional controllers, especially for plants with large time delays. However, in spite of these advantages,
there are still some difficulties that can appear in the implementation of DMC in local control loops. This
is due to limitations of the computational resources in industrial devices (e.g., Programmable Logic
Controllers). To overcome these difficulties, we propose a tuning strategy for the DMC algorithm with
reduced horizons. It is shown that a reduction in the length of prediction and dynamic horizons can
reduce the required memory in industrial controllers without degrading the quality of control.

© 2018 Published by Elsevier Ltd on behalf of ISA.

1. Introduction

The advanced controllers that belong to a group of MPC (model
predictive control) algorithms are attracting more and more
attention in industry (see, e.g., [1,2]). The major reason is that the
control action can be computed optimally based on the process
model. At the same time, the constraints for the control signals and
for the process variables can be easily incorporated in the control
algorithm for both SISO (single input single output) and MIMO
(multi input multi output) plants [3,4]. One of the first versions of
the MPC algorithms was the DMC (dynamic matrix control) algo-
rithm proposed in Cutler and Ramaker [5] for a chemical process.
In comparison to the MPC algorithm, the DMC controller uses the
step response of the plant, which can be approximated by the first
order plus delay time (FOPDT) model, specified for a chosen
operating point of the system. The mathematical model of the
plant is used to predict its future outputs over a prediction horizon
and the control signals are determined from the minimization of
an objective function that includes the predicted data [6]. In effect,
the DMC algorithm allows for obtaining a better quality of control
(e.g., smaller overshoots or a shorter settling time) than the clas-
sical PI or PID controllers (see, e.g., [6]), especially for plants with
large time delays. However, PID controllers are still dominant in
local control loops, since predictive algorithms require more

computational resources and memory in control devices [7e10].
Moreover, the available memory space can be greatly limited in
industrial reality, when several control algorithms have to be
coded on a single device, or when the created programs must
follow company standards. For example, it may be necessary to
implement additional function blocks with optional control algo-
rithms, although only one control algorithm is used at a time. The
implementation problems can also occur when the optimization
task in the predictive algorithm has to be solved on-line at each
sampling instant [7,9]. This issue was tackled by other authors for
MPC controllers with the state-space representation of the plant.
One approach is based on multi-parametric methods, for which
the controller outputs are calculated off-line as functions of state
variables (parameters). Then, the control signal is dependent on
current state variables and a region of active or inactive constraints
in the state space [11,12,9]. In effect, there is no need to solve the
optimization task on-line, but the number of regions to be stored
in the controller memory may grow exponentially in the predic-
tion horizon [13]. The other approach uses Laguerre functions that
allow using longer control horizons with a reduced computational
complexity and less number of parameters to be stored in the
controller memory, and can also be implemented by using multi-
parametric techniques [13e15].

Another important issue, which makes the implementation of
the DMC algorithm difficult, is the selection of tuning parameters,
i.e., prediction horizon HP, control horizon HC, dynamic horizon HD,
move suppression coefficient l and controller sampling time Tc. In
practice, the controller parameters can be found by trial and error* Corresponding author. ul.Akademicka 16, 44-100 Gliwice, Poland.
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method [16e18], but this often results in a poor quality of control.
Therefore, the selection of controller parameters and their influ-
ence on closed-loop system responses are widely discussed in the
literature. One of the most representative works in this area is the
paper by Shridhar and Cooper [19], which was the basis for other
tuning procedures. The authors present easy-to-use analytical ex-
pressions for the controller parameters. The proposed tuning
method was also extended for MIMO systems [20,21] and for
integrating processes [22,23]. The other tuningmethods that can be
found in the literature are rather focused on specified tuning pa-
rameters, which have the most significant impact on the control
system behavior [24e31], and the other parameters are usually
determined according to [19].

Since the DMC algorithm uses a linear model of the plant, the
mentioned tuning procedures are often based on the FOPDTmodel,
making the tuning procedure easy to use by less experienced en-
gineers. However, when implementing the DMC algorithm one
should be aware that the prediction HP, control HC and dynamic HD

horizons have a strong influence on the size of matrices that must
be stored in the controller memory, and thus, on the computational
complexity. Especially, all the tuning procedures that are based on
the well-known rules given by Shridhar and Cooper [19] may
requiremore space in thememory of the controller. In effect, it may
be difficult or even impossible to implement the DMC algorithm
with additional adaptive mechanisms (see, e.g., [32,33]), quadratic
programming solvers, or to implement software that follows the
company standards in typical PLC units. Hence, the main goal of the
paper is to propose tuning rules for the DMC controller that have
two basic features:

� the control algorithm is easy to tune
� the DMC controller can be implemented for SISO systems in
local control loops, in PLC units with low computational
resources

The proposed tuning rules are tested with real and simulated
benchmark plants and their effectiveness is compared with the
results obtained for the tuning rules given in Shridhar and Cooper
[19]. It is shown that a reduction in the length of prediction HP and
dynamic HD horizons can reduce the required memory in PLC unit
without degrading the quality of control in comparison to the re-
sults given in Shridhar and Cooper [19]. Moreover, it is shown that
the settling time of the control system can be easily changed by an
additional tuning parameter. In the remainder of the paper, the
tuning procedures proposed by Shridhar and Cooper [19] will be
referred to as the S-C method or S-C parameters.

The DMC algorithmwas implemented in the analytical form and
the implementation details are given in the next section. The
proposed tuning rules are given in Section 3 and Section 4 presents
their effectiveness based on the simulations and laboratory
experiments. Finally, Section 5 concludes the paper.

2. DMC algorithm for SISO plants

The general idea of the DMC algorithm is to determine the
future control increments Du at the current time instant k by
minimizing the following cost function J over the prediction
horizon HP:

JðkÞ¼
XHP

p¼1

ðyspðkþpjkÞ�yðkþpjkÞÞ2þl
XHC�1

p¼0

ðDuðkþpjkÞÞ2 (1)

where: ysp (k þ pjk), y (k þ pjk), Du (k þ pjk) are the set point,
controlled variable and control increment at time instant k þ p

predicted at time instant k, respectively. The analytical form of the
DMC controller for a SISO plant, which is a solution to the optimal
problem (1), can be determined as follows [34].

Step 1 (collection of step response data)
Collect the step response data for a specified operating point of

the system and fit the FOPDT model (2) by determining its
parameters, i.e., the overall time constant T, delay time To and plant
gain ko:

KðsÞ ¼ koe�sTo

sT þ 1
(2)

Step 2 (determination of tuning parameters)
The parameters of the FOPDT model (2) are used to tune the

DMC algorithm, i.e., to determine the prediction horizon HP, control
horizon HC, dynamic horizon HD, move suppression coefficient l

and controller sampling time Tc. In Section 3, it is shown how to
select these parameters.

Step 3 (determination of Ke parameter)
As shown in Fig. 1, the approximated controlled variable y is

sampled every Tc seconds and its samples gi¼ g (iTc) over the pre-
diction horizonHP are the entries of the system's dynamicmatrix G:

G ¼

2
6666664

g3 0 / 0
g4 g3 / 0
« « 1 «

gHCþ2 gHCþ1 / g3
« « 1 «

gHP
gHP�1 / gHP�HCþ1

3
7777775

(3)

In the presented case, we omit the first elements of the FOPDT
response that are equal to zero, since they do not influence the
controller output signal. Moreover, the resulting matrices have a
reduced size. The number of the first elements gi¼ 0 in the FOPDT
response is equal to the window horizon Hw [3]:

Hw ¼ floor
�
T0
Tc

þ 1
�

(4)

Then, calculate the matrix K:

K ¼ K�1
0 $GT (5)

where:

Fig. 1. Approximation of the step response data by the FOPDT model.
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