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a b s t r a c t

In this research, a robust feedback linearization technique is studied for nonlinear processes control. The

main contributions are described as follows: 1) Theory says that if a linearized controlled process is stable,

then nonlinear process states are asymptotically stable, it is not satisfied in applications because some states

converge to small values; therefore, a theorem based on Lyapunov theory is proposed to prove that if a

linearized controlled process is stable, then nonlinear process states are uniformly stable. 2) Theory says

that all the main and crossed states feedbacks should be considered for the nonlinear processes regulation, it

makes more difficult to find the controller gains; consequently, only the main states feedbacks are utilized to

obtain a satisfactory result in applications. This introduced strategy is applied in a fuel cell and a manipulator.

© 2018 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Robust feedback linearization technique is concerned with the

local stability of a nonlinear process. It is a formalization of the

intuition that a nonlinear process should behave similarly to its lin-

earized approximation for small range motions. Because all physi-

cal processes are inherently nonlinear, robust feedback linearization

technique serves as the fundamental justification of using linear con-

trol strategies in practice, i.e., it shows that stable design by linear

control assures stability of the original physical process locally. This

research is focused in this interesting issue.

There are some investigations about stable controllers. Stability of

controllers for delayed processes is introduced in Refs. [1–3]. In Refs.

[4–7], stability of some kind of adaptive controls is mentioned. Sta-

bility of controllers for linear processes is considered in Refs. [8–11].

The above mentioned investigations show that stable controllers

could be directly designed for nonlinear processes; however, in some

cases, stable controllers are employed in synthetic models, which is

a little far to applications.

There is some research about robust control of linearized mod-

els. Controllers based on a feedback linearization are designed in

Refs. [12–15]. In Refs. [16–19], processes controls based on linearized

models are designed. Robust feedback linearization is mentioned in

Refs. [20–23]. In Refs. [24–27], controllers of the linearized turbine,

pendulum, robotic arm, and rotor are investigated. The aforemen-

tioned research shows that in these days a robust linearization tech-
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nique is utilized in applications; therefore, it is an actual and inter-

esting issue.

Robust feedback linearization technique is used for the nonlinear

processes regulation. Regulation is a kind of control in which all pro-

cess states should converge to constant references. Robust feedback

linearization technique has two main problems which are focused on

differences between the theory and applications:

1. Theory says that if a linearized controlled process is stable, then

nonlinear process states are asymptotically stable, it means that

all process states should converge to zero [28,29]. Nevertheless,

it is not exactly satisfied in applications because in some cases,

some nonlinear process states only converge to small values.

2. A main state is when a state is utilized by the controller for reg-

ulation of the same state, while a crossed state is when a state is

utilized by the controller for regulation of a different state. The-

ory says that feedback of all the main and crossed states should be

considered in the controller for the nonlinear process regulation

[28,29]. It sometimes makes more difficult to find the controller

gains.

This investigation proposes a strategy to solve aforementioned

problems which is detailed by the following two steps:

1. From Lyapunov theory, uniform stability is stronger than stability

because the first is satisfied for any initial time, while the second

is satisfied only for a zero initial time. However, uniform stabil-

https://doi.org/10.1016/j.isatra.2018.01.017

0019-0578/© 2018 ISA. Published by Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.isatra.2018.01.017
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/isatrans
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2018.01.017&domain=pdf
mailto:jrubioa@ipn.mx
https://doi.org/10.1016/j.isatra.2018.01.017


J.J. Rubio / ISA Transactions 74 (2018) 155–164156

ity is weaker than asymptotic stability because the first assures

the error convergence to a small value, while the second assures

the error convergence to zero. This study suggests a theorem to

prove that if the linearized controlled process is stable, then non-

linear process states are uniformly stable. It represents better the

control applications.

2. In the introduced method, only main states feedbacks are utilized

by the controller to obtain a satisfactory result in applications. It

makes easier to find the controller gains.

From the above research, nonlinear processes with robustness

are studied in Refs. [13,14,16,18,23,30,31]. In control theory, robust

control is an approach that explicitly deals with uncertainty. Robust

methods aim to achieve robust performance or stability in presence

of uncertainties. In results, this method is applied to two nonlinear

processes with inputs and parameters uncertainties.

Finally, the suggested technique is applied to two nonlinear pro-

cesses: a fuel cell and a manipulator. A fuel cell is applied for the

electricity generation from hydrogen fuel. A manipulator is mainly

utilized to move objects in the automobile industry.

Other sections are focused in the following issues. In Section 2, the

proposed controller is introduced for the nonlinear processes regu-

lation. Suggested controller is applied for the fuel cell regulation in

Section 3. In Section 4, mentioned controller is applied for the manip-

ulator regulation. Control results for the two processes regulation are

shown in Section 5. In Section 6, the conclusion and future research

are described.

2. Controller of nonlinear processes

In this section, nonlinear models are presented, a robust feedback

linearization controller is proposed, and a theorem to study the pro-

cess stability is introduced.

2.1. Nonlinear processes

In this subsection, nonlinear processes are described.

Consider the following nonlinear processes:

Ẋ = f (X,U) (1)

where X ∈ ℜn are states, U ∈ ℜm are inputs, and f (·) ∈ ℜn are con-

tinuous differentiable nonlinear functions.

2.2. Proposed controller

In this subsection, a controller for the nonlinear processes reg-

ulation is studied. The objective of controller is that using inputs,

states of nonlinear processes should follow constant references, it is

denoted as the states regulation.

Consider control functions as follows:

U = −KX (2)

where K ∈ ℜm×n are controller gains.

Fig. 1 shows a proposed controller where U are inputs, X are

states, and f (·) are nonlinear functions.

Fig. 1. A proposed controller.

2.3. Stability analysis

In this subsection, stability of an introduced controller for the

nonlinear processes regulation is analyzed. It is based on four parts,

1) a closed loop nonlinear process is obtained, 2) the controllability

is studied, 3) controller gains are determined, and 4) a theorem to

analyze the stability of the controller applied to nonlinear processes

is introduced.

2.3.1. Closed loop nonlinear process

A closed loop nonlinear process of controller applied for the non-

linear processes regulation will be obtained. It will be used for stabil-

ity analysis.

Applying Taylor series to (1) gives the following result:

Ẋ = 𝜕f (X,U)
𝜕X

(
X − Xd

)
+ 𝜕f (X,U)

𝜕U

(
U − Ud

)
+ r (3)

where Xd are desired states and Ud are desired inputs, Xd and Ud are

considered as zero because it is the regulation case, r is a residue.

Adding and subtracting
(

𝜕f (X,U)
𝜕X

|||X=0,U=0

)
X and

(
𝜕f (X,U)
𝜕U

|||X=0,U=0

)
U

to (3) gives:

Ẋ = 𝜕f (X,U)
𝜕X

X + 𝜕f (X,U)
𝜕U

U + r

+
(
𝜕f (X,U)

𝜕X

||||X=0,U=0

)
X −

(
𝜕f (X,U)

𝜕X

||||X=0,U=0

)
X

+
(
𝜕f (X,U)
𝜕U

||||X=0,U=0

)
U −

(
𝜕f (X,U)
𝜕U

||||X=0,U=0

)
U

⇒ Ẋ =
(
𝜕f (X,U)
𝜕X

||||X=0,U=0

)
X +

(
𝜕f (X,U)
𝜕U

||||X=0,U=0

)
U

+
[
𝜕f (X,U)
𝜕X

−
(
𝜕f (X,U)
𝜕X

||||X=0,U=0

)]
X

+
[
𝜕f (X,U)
𝜕U

−
(
𝜕f (X,U)
𝜕U

||||X=0,U=0

)]
U + r

(4)

Equation (4) can be rewritten as follows:

Ẋ = AX + BU + ÃX + B̃U + r

⇒ Ẋ = AX + BU + 𝛿
(5)

where:

A =
(
𝜕f (X,U)
𝜕X

||||X=0,U=0

)

B =
(
𝜕f (X,U)
𝜕U

||||X=0,U=0

)

Ã = 𝜕f (X,U)
𝜕X

−
(
𝜕f (X,U)
𝜕X

||||X=0,U=0

)

B̃ = 𝜕f (X,U)
𝜕U

−
(
𝜕f (X,U)
𝜕U

||||X=0,U=0

)
(6)

and 𝛿 = ÃX + B̃U + r is an unmodelled error which is bounded as fol-

lows ‖𝛿‖ ≤ 𝛿.

Substituting the control function (2) in equation (5) gives:

Ẋ = AX + B [−KX] + 𝛿

⇒ Ẋ = ACX + 𝛿
(7)

where AC = A − BK. Equation (7) is the closed loop nonlinear process.
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