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a b s t r a c t

Fractional order systems become increasingly popular due to their versatility in modelling and control appli-

cations across various disciplines. However, the bottleneck in deploying these tools in practice is related to

their implementation on real-life systems. Numerical approximations are employed but their complexity

no longer match the attractive simplicity of the original fractional order systems. This paper proposes a

low-order, computationally stable and efficient method for direct approximation of general order (fractional

order) systems in the form of discrete-time rational transfer functions, e.g. processes, controllers. A fair com-

parison to other direct discretization methods is presented, demonstrating its added value with respect to

the state of art.

© 2018 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus may be generally described as a generalization

of integration and differentiation to an arbitrary order [1,2]. Several

physical systems have been shown to have constitutive equations of

non-integer order [3–6]. The basic element of fractional order sys-

tems is the fractional order operator, defined in its continuous form

as s𝜆, with 𝜆 a real number usually chosen in the (−1÷1) range, but

not limited. An important property modelled by such systems is that

of memory [7]. This property requires a fractional order system of

infinite dimension, involving unlimited memory in comparison to

the classical integer order systems that are finite dimensional. The

challenge for implementing such fractional order systems and con-

trollers is finding their rational approximation [8–10]. Analog real-

izations of fractional order systems have been presented in Refs.

[11,12]. Important features to ensure stability of such equations, in

their (non)rational form are discussed in Refs. [13–15].
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For a digital implementation of fractional order systems (e.g. con-

trollers) there are two discretization methods: indirect and direct

discretization, respectively [16].

In the indirect discretization method, a rational continuous-time

approximation is firstly developed, subsequently discretized using

any of the well known discretization techniques [17,18]. Among

the most widely used continuous-time approximation methods are:

the Oustaloup Recursive Approximation method [19], the Carlson

method [20] and the Modified Oustaloup Filter [18,21].

An example of a recent indirect discretization method is based

on approximating the fractional integrator/differentiator using the

CFE expansion approach along with the Al-Alaoui operator [22].

The method presented here seems to be simpler than other meth-

ods using directly the discrete-time version of the Grünwald-

Letnikov operator. Another approach also based on efficient con-

tinued fraction approximation of the fractional order operator is

presented in Ref. [23]. The discrete differentiator is expressed as

a z-transfer function, whose coefficients are given in closed form
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in terms of the sampling time and an approximation parameter.

The method has its limitation, as the application is focused on pro-

ducing a rational discrete-time approximation for the half order

differentiator.

The Laguerre continued fraction expansion of the Tustin frac-

tional discrete-time operator to irreducible Jacobi tri-diagonal matri-

ces is presented in Ref. [24]. The approach is limited to fractional

order integrator or differentiators and not to general fractional

order systems. Time and frequency domain analysis is performed to

study the quality of the approximation. Another recent paper deal-

ing with fractional-order discrete-time linear time-invariant single-

input single-output systems is given in Ref. [25]. The approximation

is based on a new, two-layer, fractional-order discrete-time Laguerre

filters.

Another indirect discretization approach is presented in Ref. [26].

The method is based on using particle swarm optimization (PSO)

to approximate fractional order operators and employs an heuris-

tic procedure to optimize the interlacing of zero-pole pairs on the

real axis. Once this continuous-time approximation has been opti-

mized, a discretization rule is applied to obtain the discrete approx-

imation. Simulation results are provided to show that the frequency

response obtained by PSO improves the approximation offered by

other efficient and recent indirect discretization techniques. An effi-

cient implementation of digital non-integer order systems, with

applications to controllers for electro-mechanical systems, is pre-

sented in Ref. [27]. A consolidated approximation technique is used

and practical implementation problems are addressed, such as the

effects of the sampling period, of the conversion between analog

and digital domain (and vice versa) and the associated quantiza-

tion.

Direct discretization methods are based on the expansion of a

generating function, defined as a mapping relation or formula for

conversion from the continuous-time to the discrete-time opera-

tor. Most of the research papers dealing with direct discretization

methods tackle the problem of approximating the fractional order

differentiator/integrator and only very few discuss the performance

of the proposed approximation method for more complicated frac-

tional order transfer functions [16,28–30]. Some research papers dis-

cuss the discretization of low-pass fractional order filters, such as in

Ref. [31].

A different approach in computing the discrete-time approxi-

mation of the fractional order integrator or differentiator is pro-

posed in Ref. [52], with extensions to fractional order low-pass fil-

ters [31–33]. Their direct discretization method is based on com-

puting first the analytical impulse response of the fractional order

system (IRID). Since the analytical computation of the impulse

response of the fractional order system is a tedious task, this

approach has been solely developed for fractional order integra-

tors/differentiators and first/second order fractional order low-pass

filters, which limit the applicability of the method. Another tech-

nique has been given in Ref. [34], valid for simple fractional order

integrators/differentiators, by keeping the step response invari-

ant, rather than the impulse response. A comprehensive review of

numerical tools for fractional calculus and fractional order controls

is given in Ref. [35].

Related to the discrete-time approximations of non-rational

transfer functions are the methods for identification. Some of these

use exogenous inputs such as step response data [36], block pulse

functions [37], nonlinear function optimization [38] or combined

time-frequency methods [39]. Recent notable methods for identi-

fication of generic parametric models use Taylor expansions [40],

iterative methods [41–43] or alternative approaches such as multi-

innovation theory [44].

In this paper, we propose an original efficient direct approxima-

tion method based on the impulse response. The tedious step of

computing an analytical form of the impulse response is avoided

by using instead the frequency response of a fractional order sys-

tem. Employing the frequency response as a basis of computing the

impulse response allows for increased flexibility of the method: the

proposed technique can be applied to any type of fractional order

systems to determine its discrete-time approximation.

The paper is structured as follows. Some preliminaries follow this

section to allow the reader an overview of the state of art. The pro-

posed direct discretization method is introduced and described in

the third section. Several numerical examples showing the effective-

ness of the proposed approach in comparison to similar method are

described. A conclusion section summarizes the main outcome of

this paper.

2. Preliminaries

The most popular generating functions used to map the Laplace

operator s to the discrete-time operator z−1, s±α →
(

w
(

z−1
))±α

, may

be summarized as:

1. Euler rule:

wE

(
z−1

)
= 1 − z−1

T
(1)

2. Tustin rule:

wT

(
z−1

)
= 2

T

1 − z−1

1 + z−1
(2)

3. Simpson rule:

wS
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)
= 3
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) (
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)
1 + 4z−1 + z−2

(3)

where T stands for the sampling period. Because of the fitting prob-

lems associated with Tustin rule, several linear interpolation opera-

tors have been proposed, e.g. the Al-Alaoui integral rule:

wA

(
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)
= 𝛼wE

(
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)
=

= T (1 + 𝛼)
2

(
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1+𝛼 z−1
)

1 − z−1
(4)

with 𝛼 ∈ (0÷1) a user supplied weight that balances the interpola-

tion between the classical Euler and Tustin rules. For 𝛼 = 3/4, the

conventional Al-Alaoui operator is obtained. A similar approach led

to a generating function based on a linear combination of Simpson’s

rule and Trapezoidal integrators [45], i.e. the operator:

wC

(
z−1

)
= k0

1 − z−2(
1 + bz−1

)2
(5)

where k0 =
(

6b

T(3−a)

)𝛼
, b = 3+a−2

√
3a

(3−a) , with 𝛼 ∈ (0÷1) the fractional

order of the differentiator and a ∈ (0÷1), the weighting factor

between the Simpson and Tustin rules.

For band-limited rational approximation of fractional order

elements, higher order discrete-time transfer functions need to be

determined such that they maintain the constant-phase character-

istics of the fractional order integrator, within a selected frequency

range. To obtain this approximation, several recursive formulae have

been considered. The order of the digital filter that approximates

the fractional order element is always a compromise between the

accuracy and the ease of hardware implementation. In terms of

recursive methods, it is well known fact that the PSE (power series

expansion) scheme will produce FIR (finite impulse response) filters

and requires a higher order of the filter to produce an acceptable

accuracy of the approximation [45]. This obviously complicates

the analysis and modelling of fractional order systems [17]. CFE

(continuous fraction expansion) methods are generally preferred,

since they lead to IIR (infinite impulse response) filters, requiring
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