
Research article

Robust cubature Kalman filter for GNSS/INS with missing observations and
colored measurement noise

Bingbo Cui a,b, Xiyuan Chen a,b,n, Xihua Tang a,b, Haoqian Huang a,b, Xiao Liu a,b

a School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
b Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology Ministry of Education, Nanjing, Jiangsu 210096, China

a r t i c l e i n f o

Article history:
Received 26 September 2016
Received in revised form
11 August 2017
Accepted 23 September 2017

Keywords:
Integrated navigation
Colored noise
Robust cubature Kalman filter
Fiber optic gyro

a b s t r a c t

In order to improve the accuracy of GNSS/INS working in GNSS-denied environment, a robust cubature
Kalman filter (RCKF) is developed by considering colored measurement noise and missing observations.
First, an improved cubature Kalman filter (CKF) is derived by considering colored measurement noise,
where the time-differencing approach is applied to yield new observations. Then, after analyzing the
disadvantages of existing methods, the measurement augment in processing colored noise is translated
into processing the uncertainties of CKF, and new sigma point update framework is utilized to account
for the bounded model uncertainties. By reusing the diffused sigma points and approximation residual in
the prediction stage of CKF, the RCKF is developed and its error performance is analyzed theoretically.
Results of numerical experiment and field test reveal that RCKF is more robust than CKF and extended
Kalman filter (EKF), and compared with EKF, the heading error of land vehicle is reduced by about 72.4%.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the research of integrating global navigation satellite sys-
tem (GNSS) with inertial navigation system (INS), data fusion is a
most active research area, where Kalman filter (KF) and its var-
iants have been widely applied. Due to the inherent dis-
advantages of wireless communication, GNSS suffers from signal
attenuation, dense multipath and signal outages inevitably,
which degrades the performance of KFs. Besides adding extra
sensors, which may increase the cost and bring new problems in
data fusion, improving the data fusion methods can help in mi-
tigating the drift error of INS during GNSS-denied duration [1,2].
There is no satisfactory result from extended Kalman filter (EKF)
when large system uncertainties occur, i.e., EKF may diverge
quickly when short signal outages appear. With the development
of computer hardware, many artificial intelligence (AI) methods
have been introduced into the state estimation of GNSS/INS [3,4],
which generally require a training period to adjust their model
parameters. Because of high noise of sensors or frequent short
signal outages in urban environment, AI-based methods are
time-consuming or less efficient in real-time application [5]. It
has been reported that when the duration of signal outage is
short (e.g., less than 60 s) KFs outperforms AI-based methods [1],

so we focus on improving nonlinear filter to handle the frequent
signal outages problem.

When the navigation system suffers from signal outages and
dense multipath, the measurement noise becomes time-correlated
and non-Gaussian [6], making the innovations of KFs larger and the
filter unstable in the sequel. It is generally recognized that particle
filter (PF) has superiority in handling nonlinear and non-Gaussian
problems [7]. Boucher et al. utilized a hybrid filter based on PF and
KF to bridge the GPS outages [8], which however is time-de-
manding in case the involved system dimension is high. Due to
their positive features in better accuracy than EKF and less com-
putational cost than PF, sigma-point KF (SPKF) has drawn great
attention in recent decade, such as unscented KF (UKF) [9], Gauss-
Hermite quadrature filter [10] and more recently cubature KF (CKF)
[11]. Unlike PF where the sigma points are randomly generated,
SPKF employs deterministic sampling that needs much less sigma
points than PF. Many works have been done to verify the super-
iority of SPKF in integrated navigation [12,13], the results of which
indicate that SPKF outperforms EKF in terms of convergence rate
and robustness towards system uncertainties. Xu et al. have verified
that CKF outperforms UKF for estimation problem with high state
dimension [14], as the general dimension of GNSS/INS is 15 or
higher, we focus on the usage of CKF in our work.

It has been verified that the nonlinearity approximation error of
EKF for the measurement function of tight GNSS/INS can be ne-
glected [15], but the comparison in [16] revealed that EKF is more
easily to be degraded by external disturbances than UKF. In other
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words, the approximation error is not the main factor that leads to
the failure of EKF in GNSS/INS, and invalid assumption of standard KF
is the major cause of performance degradation. Many robust filtering
methods have been proposed to solve the problems of KFs, i.e., the
invalid Gaussian assumption and inevitable model uncertainties.
Masreliez et al. proposed a robust KF by designing a nonlinear score
function to deemphasize the large innovations [17], which however,
needs a prior knowledge to fix the score function. Parameters iden-
tification of scarce measurement systems has been widely reported
[18–20], Wang and Ding proposed gradient-based and least squares-
based method to identify the unknown parameters of system model
[21,22], where a batch process of the observations are involved,
making their usage in real-time navigation needs further verification.
Shmaliy proposed a robust Kalman-like FIR estimator to remove the
dependence of KFs on initial state errors and noise statistics [23], Shi
et al. studied the stochastic incomplete measurement by using H1
filtering [24], both of which show better performance than KFs when
large system uncertainties are involved. However, the selection of
averaging horizon length has a great effect on the performance of
robust FIR estimator [25], and the H1 filter would make a tradeoff
between filtering robustness and accuracy.

It has been reported that the assumption of a Gaussian state
predictive density at each step is closely satisfied in many practical
applications [17]. In the calculation of posterior probability density
function (PDF), the predicted sigma points should be weighted
more than the observations with non-Gaussian and colored noise. A
novel sigma point update method without constructing the prior
PDF was proposed by Tian [26], and García-Fernández pointed out
that the Bayesian update framework is less efficient when the noise
of observations is small [27]. Inspired by the work of Tian and
García-Fernández, an efficient Bayesian update framework is de-
veloped in this paper to enhance the robustness of CKF in case
frequent signal outages occur. More specifically, the odd and higher
order terms of the covariance Taylor series are retained in the ap-
proximation of the likelihood, which makes the approximation of
posterior PDF more accurate. The main contributions of this paper
can be summarized as follows: (1) it is the posterior sigma points
error not the first two moments of PDF that are reused in the next
filtering period of CKF, which provides more prior information than
traditional re-sampling method, (2) the uncertainties from colored
noises are translated into the generation of sigma points, where no
explicit parameters are needed, (3) the proposed robust CKF is
suitable for online integrated navigation.

The rest of this paper is arranged as follows. In Section 2, an
improved cubature Kalman filter is derived by considering colored
measurement noise. In Section 3, the novel sigma point update
framework is presented, based on which a new filter is developed
and its error performance is analyzed. The result of field test is
reported in Section 4. Finally, some conclusions are drawn based
on the simulation results.

2. Cubature Kalman filter with colored measurement noise

Consider a discrete nonlinear system

ω= ( ) + ( )− −x f x 1k k k1 1

ν= ( ) + ( )z h x 2k k k

where R∈ ×xk
n 1, R∈ ×zk

p 1 are the state and measurement vector
at time tk, ω −k 1 is Gaussian white noise and satisfies
ω ~ ( )− −N Q0,k k1 1 , νk is colored measurement noise and satisfies

ν ψ ν ς= + ( )− 3k k k k1

where ( )ψ κ= − Texpk , κ is time constant and T is the sample in-
terval, ςk is Gaussian white noise and satisfies ς ~ ( )N R0,k k . The in-
itial state x0, ω −k 1 and νk are mutually independent, ~ (^ )x N x P,0 0 0 .

Let ~ (^ )− − | − − | −x N x P,k k k k k1 1 1 1 1 be the posterior state at time −tk 1,
~ (^ )| − | −x N x P,k k k k k1 1 be the predicted state at time tk. =m n2 and
=w m1/i the algorithm of original CKF (with ψ = 0k ) is presented in

Algorithm 1. Now consider the observation zk with colored noise

β ν= + ( )z H x 4k k k k k

where = ∂ ( ) ∂ | =^ | −
H h x x/k k k x xk k k 1

and β β β β= ( ⋯ )diag , , ,k k k p k1, 2, , is used
to take the nonlinear approximation residuals into account. Apply
the time-differencing approach from [6] to yield new measure-
ment equation as
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In order to simplify (5), let the system function be formulated as

α ω= + ( )− −x F x 6k k k k k1 1

where = ∂ ( ) ∂ | =^ − | −
F f x x/k k k x xk k k1 1

, α α α α= ( ⋯ )diag , , ,k k k n k1, 2, , . Then we
get

α ω= ( ) ( − ) ( )−
−

−x F x 7k k k k k1
1

1

Let β=B Hk k k, α=A Fk k k, substituting (7) into (5) we have
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and the gain of the filter and the posterior covariance can be written
as [28]
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Noting that *Hk , ν*
k contains the nonlinear approximation re-

siduals in matrices Bk and Ak, in order to simplify the analysis we
assume that β = Ik , which is valid for both loosely and tightly
coupled GNSS/INS [15]. The state error is utilized as the output of
estimator and a closed feedback KF loop is used to compensate the
drift of inertial sensors, so α = Ik is also acceptable. Notice that, CKF
with colored measurement noise has the same prediction stage
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