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a b s t r a c t

In this work, a novel model predictive control (MPC) scheme is introduced, by integrating direct and
indirect neural control methodologies. The proposed approach makes use of a robust inverse radial basis
function (RBF) model taking into account the applicability domain criterion, in order to provide a suitable
initial starting point for the optimizer, thus helping to solve the optimization problem faster. The per-
formance of the proposed controller is evaluated on the control of a highly nonlinear system with fast
dynamics and compared with different control schemes. Results show that the proposed approach
outperforms the rivaling schemes in terms of response; moreover, it solves the optimization problem in
less than one sampling period, thus effectively rendering MPC-based controllers capable of handling
systems with fast dynamics.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Artificial neural networks (ANNs or simply NNs) [1] are con-
sidered an ideal solution for the modeling of highly nonlinear
systems or processes, and during the last twenty years they have
been extensively used for the realization of such models [2–5], in
order to design novel control schemes. The success of NN-based
controllers originates from their inherent ability to model un-
known systems or processes by applying specialized training
algorithms exclusively on experimental data, providing an out-
standing alternative in cases where conventional methods fail to
form appropriate control laws.

Among the different NN architectures used to design control
schemes, radial basis function neural networks (RBFNNs) [6]
present many advantages, including increased accuracy, better
interpolation capability, simpler structures and faster training
algorithms [7,8]. These particular characteristics have made
RBFNNs a preferred choice in formulating state-of-the-art mon-
itoring [9,10] and control [3,5,11] schemes. On the other hand,
the main disadvantage of all black-box modeling techniques in-
cluding NNs, is extrapolation [12], a phenomenon appearing in
cases where the training dataset is not sufficiently covering the
input space. Extrapolation results in unreliable predictions,
which can ultimately lead the system to instability.

There are two main design approaches when it comes to im-
plementing NN-based control strategies, namely direct design and
indirect design. In indirect design control techniques the NN acts
as a dynamical model of the system, predicting the system state
vector and/or outputs [13], whereas in the case of direct design,
the NN approximates the inverse dynamics of the system [14] and
acts directly as a controller. Indirect design is usually integrated in
an appropriate model predictive control (MPC) methodology [15];
in this case an NN-based nonlinear dynamic system model is
constructed using historical input-output data, so that receding
horizon predictions can be successfully obtained [16–19]. An op-
timization problem must then be formulated and solved, in order
to obtain the optimal series of actions, so as to drive the system to
the desired state. MPC techniques can manage MIMO systems,
while also taking into account input-output-state restrictions and
model-system mismatches; due to these advantages, MPC has
found many successful applications in diverse fields [20–22].

Despite all their merits, MPC-based indirect design control
methodologies share a significant drawback, namely the restric-
tion that the nonlinear optimization problem must be solved in
real-time [15]. The time required to solve the on-line optimization
problem must be less than the sampling time period, so that the
control scheme has enough time to obtain the control action and
apply it to the system. If the solution of the optimization problem
requires more time, there is a risk of control failure that may lead
to instability, as the optimal value of the manipulated variable will
not be computed and applied on time. However, the available time
window between two consecutive control steps may not even be
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adequate for solving a sub-optimal MPC [23]. For these reasons,
standard MPC methodologies are not applicable to systems with
fast dynamics. The explicit MPC [24,25] technique was invented in
order to overcome this problem, by partitioning the input space
and assigning a different optimal control law in each region. Cur-
rent explicit MPC theory guarantees global optimality for linear
systems [26], but application on nonlinear systems requires ap-
proximating techniques [27], which may be even more time-
consuming than solving the real-time optimization problem itself.
The reduction of the computational cost in MPC methodologies is
the prime aspect of current relevant literature [28,29], but, as of
this time, fast optimization algorithms [30,31] are limited to linear
systems. An interesting alternative for achieving results that can
be similar to those produced by fully nonlinear MPC controllers in
terms of performance, while at the same time significantly redu-
cing the computational burden, is to linearize online the model
around the current operating point, thus resulting to a quadratic
optimization problem. Due to its effectiveness and simplicity, the
online linearization approach has found many successful industrial
applications [32–36]. A different method which eliminates the
computational burden associated with solving the optimization
problem, involves the NN approximation of the suboptimal control
signal of MPC formulations [37,38].

On the other hand, direct design control techniques avoid al-
together the optimization problem by using the NN as an explicit
control law, directly predicting the manipulated variable values
that are used as system inputs at each control step [4], while
previous input-output-state values comprise the inverse neural
model's input vector. The performance of direct design control
methodologies stems from the fact that their implementation is as
simple as computing a nonlinear function at each time step,
without the hassle of solving an optimization problem. One of the
most common direct control schemes are the inverse neural
controllers (INCs), which have been extensively used in modern
applications, as they are very fast in calculating control actions [4].
Other implementations suggest that model parameter adaptation
with offset-free control is also possible in real-time [39]. A more
recent study [40] has shown that INCs can be made robust in
multiple ways, in order to avoid extrapolation, suppress any
steady-state error, reject external disturbances, adapt to unknown
system parameters and account for system-model mismatches.

Notwithstanding the aforementioned advancements offered by
direct approaches regarding disturbance handling and steady-
state error elimination, it should be noted that these methods
usually deliver just one feasible trajectory towards the setpoint,
totally ignoring the aspect of optimality. Indirect methods are
usually better equipped to handle the latter, albeit at the cost of
abolishing the obvious advantages in terms of control action cal-
culation speed offered by direct methods. The scope of this work is
the formulation of a novel indirect control scheme, in a way that
retains all the advantages of nonlinear MPC, while also tackling its
main disadvantage, which is the increased time required to solve
the optimization problem. In order to do that, an inverse dynamic
RBFNN-based system model is built and robustified with the ap-
plicability domain (AD) technique, which enhances the prediction
reliability of the model [40]. The inverse model is incorporated to
the MPC scheme, in order to provide a suitable initial vector to the
optimization problem, aiming to decrease the solution time. The
proposed controller performance is compared to a direct inverse
neural controller employing the applicability domain and an error-
correcting technique (INCADEC) [40], a nonlinear MPC controller
and a discrete PID (DPID). All control formulations are evaluated
on the control of the nonlinear system of the inverted pendulum
on cart [41], which is a well-known benchmark for automatic
control methodologies sharing a common operating principle with
many commercial, industrial and military applications. To perform

the evaluation, appropriate control scenarios are used to test set-
point tracking and disturbance rejection, the controllers’ stand-up
and balancing capabilities, as well as their ability to handle noise
and system/model mismatches.

The rest of this paper is organized as follows. The next section
describes the radial basis function architecture, as well as the se-
lected training algorithm. The third section presents the theory
behind the INNEM initialization routine, as well as its incorpora-
tion into the MPC framework. Section 4 presents the test cases and
thoroughly discusses the results. Finally, the last section provides
the concluding remarks produced after the test cases are ex-
amined and interpreted.

2. Radial basis function neural network architecture and
training techniques

RBF neural networks belong to the feedforward neural network
architectures. The main difference of RBF networks compared to the
well-known multi-layer perceptron (MLP) architecture is that they
employ only one hidden layer, every node of which makes use of a
radially symmetrical activation function in order to compute the
hidden node response. The advantages of RBFs over other feedfor-
ward architectures include simple network structures, fast training
algorithms and increased prediction accuracy, but on the side effect
their extrapolation ability is smaller. This drawback is alleviated to a
great extent by the proposed methodology.

The RBF architecture consists of three layers, namely the input,
the hidden and the output layer, as shown in Fig. 1. The input layer
distributes data from the N input variables to the L hidden layer
nodes. All hidden nodes correspond to a center vector represent-
ing the center of the RBF in the input space. In this context, one
can see that the hidden layer performs a nonlinear transformation
of the input space to a new space of usually higher dimensionality.
The input μ ( )ul k to the l-th hidden node (called activity) is a dis-
tance metric between the k-th input vector uk and the hidden
node center vector cl. The distance metric employed in this work is
the Euclidean distance.
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Fig. 1. Typical structure of an RBFNN with Gaussian basis functions.
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