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A nonlinear optimal control problem with non-convex cost function and non-convex state constraints
can be addressed by a series of convex programming to obtain numerical solutions in previous methods.
However, a feasible initial solution is essential to ensure the convergence. In this paper, slack variables
are added into the model to handle the infeasible initial point and are penalized in the cost. What is
more, a new approximation point on the boundary of constraints is embraced in each iteration to in-
crease the similarity to original problem and decrease number of iterations. Thus, a penalty boundary
sequential convex programming algorithm is proposed, which is globally convergent to a Karush-Kuhn-
Tucker (KKT) point of original problem under mild condition. The theoretical basis is guaranteed by a
rigorous proof. Single UAV and multi-robots trajectory planning serve as simulations to verify the validity
of the presented algorithm.

© 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In last fifty years, with the rapid development of space tech-
nology and digital computer science, the optimization theory of
dynamic systems becomes more and more significant, which
forms an important branch of mathematics—optimal control
theory [1]. Recently, optimal control theory has a lot of successful
applications beyond traditional automatic control, such as space
technology, system engineering, economic management, decision
making and population control [2]. Numerous approaches have
been proposed by researchers to solve optimal control problems
effectively. These methods are mainly divided into two categories:
indirect methods and direct methods [3]. Indirect methods mainly
concern first-order necessary conditions of the optimal control
problem, and the conditions are turned into a Hamiltonian
Boundary-Value Problem (HBVP). The solution to original problem
can be obtained by solving the HBVP [4]. Three most common
indirect methods are shooting methods [5], multiple-shooting
methods [6], and collocation methods [7]. Direct methods are
fundamentally different from indirect methods. In direct methods,
the state and/or control of the original optimal control problem are
approximated in some appropriate manners, and the optimal
control problem is transcribed to a nonlinear programming pro-
blem (NLP) [8]. Similar to indirectly methods, direct methods can
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also be divided into three categories: shooting methods [9], mul-
tiple-shooting methods [10], and collocation methods [11].

In recent years, pseudo-spectral methods have increased in
popularity [12-14]. Pseudo-spectral method is a global form of
orthogonal collocation, i.e., in a pseudo-spectral method, the state
is approximated using a global polynomial and collocation is
performed at chosen points [3]. Pseudo-spectral approaches have
some branches depending on points chosen: Gauss-Lobatto points
[15], Legendre-Gauss points [16] and Legendre-Gauss-Radau
points [17]. But the main ideas of above methods are same. Both
indirect methods and direct methods have their own short-
comings. Convergence radius of indirect methods is small and
proper initial points are necessary. While for direct methods, the
accuracy of the solution is low and the optimality of the solution
need to be guaranteed [3]. The main technology result of this
paper can be regarded as a particular kind of direct method, which
concerns a non-convex optimal control problem.

Non-convex optimal control problem is a non-convex pro-
gramming problem in mathematics essentially. In common sense,
it is quite difficult to solve a non-convex programming problem
because of its nature: there is no bound of operation time and
initial guess which should be supplied by a human is required.
What is worse, the solution is very likely to be feasible or local
optimal rather than global optimal [18]. Therefore, directly sol-
ving the optimal control problem by general non-convex pro-
gramming is not appropriate for onboard applications and how to
solve the non-convex optimal control problem stably and quickly

Please cite this article as: Zhang Z, et al. Penalty boundary sequential convex programming algorithm for non-convex optimal control
problems. ISA Transactions (2017), http://dx.doi.org/10.1016/j.isatra.2017.09.014



www.sciencedirect.com/science/journal/00190578
www.elsevier.com/locate/isatrans
http://dx.doi.org/10.1016/j.isatra.2017.09.014
http://dx.doi.org/10.1016/j.isatra.2017.09.014
http://dx.doi.org/10.1016/j.isatra.2017.09.014
mailto:lijx@sjtu.edu.cn
http://dx.doi.org/10.1016/j.isatra.2017.09.014
http://dx.doi.org/10.1016/j.isatra.2017.09.014
http://dx.doi.org/10.1016/j.isatra.2017.09.014
http://dx.doi.org/10.1016/j.isatra.2017.09.014

2 Z. Zhang et al. / ISA Transactions B (AREE) EEE-NEN

becomes a primary problem. This problem will be solved per-
fectly if the non-convex problem can be transformed into a
convex problem or a series of convex problems. For convex pro-
gramming, the local optimal is global optimal, the solution time
is bounded and initial guess is not necessary [18]. Unfortunately,
most non-convex problems cannot be converted to convex at no
expense. In this paper, a kind of nonlinear optimal control pro-
blems with non-convex cost function and non-convex state
constraints are considered and the corresponding method is
presented to reduce the expense.

For non-convex optimal control problems, many researchers
have proposed effective methods. Authors present a methodology
to non-convex optimal control problems which only involves
concave inequality constraints in [19] and its key process is to
approximate the concave inequality constraints by successive lin-
earization. On the basis of [19], [20] introduces projection into the
algorithm with convergence proof. Above ideas are mainly
inspired by Difference of Convex (DC) programming [21]. DC
programming is introduced in 1985 by Pham Dinh Tao in the
preliminary state, and extensively developed by Le Thi Hoai An
and Pham Dinh Tao. Since the proposal of Concave Convex Pro-
cedure (CCCP) [22], DC programming is widely applied and be-
comes increasingly popular.

Our previous work [23] handles a kind of non-convex optimal
control problems by sequential convex programming and pro-
poses a globally convergent algorithm with rigorous proof. How-
ever, a feasible initial point is essential in the algorithm to ensure
the convergence, and the linearization of original model directly
chooses the first order Taylor expansion, which is little closer to
original model and leads to a low convergence rate. Thus, an exact
penalty strategy is introduced to address the infeasible initial case
and a boundary point is computed at each iteration to serve as the
new approximation point to preserve much more similarity to
original problem and reduce the number of iterations. The main
contributions of this paper are listed as follows.

® Sequential convex programming method is modified with an
exact penalty strategy to handle the infeasible initial condition.

® A new point on the boundary of constraints is computed at each
iteration to increase the rapidity of presented algorithm.

® Global convergence of proposed algorithm is rigorously ana-
lyzed to guarantee the output of algorithm being the KKT point
of original problem.

The paper is organized as follow: Section 2 presents the non-
convex optimal control model and sequential convex programming
method. Exact penalty model and new approximation point are
introduced with the main algorithm in Section 3. The main tech-
nical result for corresponding algorithm is analyzed in Section 4.
Section 5 provides the simulation results to verify the algorithm,
and Section 6 concludes this paper.

2. Problem statement

In this section, the model of the non-convex optimal control
problem is presented. Sequential Convex Programming method is
introduced as a comparison with the new algorithm.

2.1. Problem model

A nonlinear optimal control problem with non-convex cost and
non-convex state constraints in discrete form is addressed in this

paper, and denoted as NCP.

NCP:

N
minJ = Y, L(x(@), u@)
xu 1:21 ( ) (1)

s.t. x(@+ 1) =f(x@, u@), i=1,...,N-1, )
Il MGyG) + pill < q"Gya) + (), i=1,..,N, 3)
s(x@@), u@) <0, i=1,..,N, )
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where Eq. (1) is the cost function, N steps are included in this
discrete model. L(x, u) is a cost function of state variable x and
control variable u. Eq. (2) is the state equation of x and u, and
f(x, u) is the dynamic function of system and can be linear or
nonlinear with bounded Hessian. In Eq. (3), y = &', u’Y is in-
troduced to describe the problem more concisely. M(), p(), q(i),
r(i) are matrices in proper dimensions and Eq. (3) is a second-order
cone constraint (therefore convex). Without specific instructions,
|I-|| means Euclidean norm in remainder of the paper. In Eq. (4),
s(x, u) is a function of x and u, and it may be convex, concave, or
non-convex but has bounded Hessian, which is the main non-
convex part of the model. Eq. (5) is the equality constraint of x(i)
and u@) as well as including initial and final conditions of
variables.

The problem can be formulated in a concise optimization form
through mathematical transformation. The details can be found in
[19]. The new problem is denoted as PO.

PO:
min  f(y)
y
s.t. gy <0, i=1,..,p,
h(y=0,j=1,...74, 6)

where f(y): R" - R, g(y): R" - R and hy(y): R" - R are linear or
nonlinear and smooth functions on theirs domain with bounded

Py 5D qnq CHW
yZ P 2

Hessians and —=,
ay

therefore, f(y), {g(y)}; and

{hi( y)}?:1 are twice continuously differentiable.

From Theorem 2 (Convex Concave Procedure) in Appendix B
[22], a twice differentiable function with bounded Hessian can be
decomposed into a sum of a convex function and a concave
function. Hence, f(y), {g,(y)}’_; and {hg y)}31:1 are reformulated as

T = F0 () + Fge (D),
(V) = 8ioe V) + Gicae V) i=1, .., D,
hj(y):hjvex(y)+hjcuve(y)- ]:1' -~ q, (7)

where functions with subscript vex are strict convex functions
with eigenvalues more than zero, and strict concave functions
with subscript cave. Substituting Eq. (7) into PO, the new equality
constraint e () + Rjcaye( ¥) = 0 is derived and it can be expressed
as two inequality constraints  Rje(y) + Mige(y) <0 and
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