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a b s t r a c t

The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable
system identification process, since all the pairs with null transfer functions are previously discarded and
it can also improve the identified model quality, thus improving the performance of model based con-
trollers. In the available literature, the methods focus just on the open-loop case, since in this case there
is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other
terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in
open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are
performed by using the traditional methods and the proposed one to show its effectiveness.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In a survey conducted by Honeywell in refineries, chemical,
petrochemical and pulp and paper plants, out of the 11,000 control
loops analyzed, 97% of them use the PID algorithm [7]. However,
the search for reduction of losses, for increased efficiency and for
the use of more complex systems led many industries to adopt
new control algorithms. These algorithms typically rely on a well-
designed model.

A non-trivial part of any control system is the process of
modeling. System Identification is an approach that uses algo-
rithms to obtain mathematical models, representing dynamic
systems. The result of the identification is a model, that represents
the relationship between the inputs and outputs of a system. The
System Identification process goes through the following steps:
experimental design, data collection, selection of candidates for
the structure of the model and definition of model parameters,
model estimation and validation. Thus, the design of plant tests to
generate data for identifying dynamic models is critically im-
portant to develop model-based process control systems.

In order to improve the design of the identification experi-
ments, a pre-identification step is usually applied. It is a pre-
vious step to identification, which aims to acquire process
information to improve the experiment design. The purpose of
this step is to provide previous information regarding static

gain of the process, system order and time delay estimation.
Usually, a simple signal such as a pulse or square wave is ap-
plied individually to each input.

Generally, issues related to IO selection are part of the Control
Structure Design stage, after the plant model has already been
identified. In this context, IO selection is described as the proce-
dure of selecting suitable variables u to be manipulated by the
controller (plant inputs) and suitable variables y to be supplied to
the controller (plant outputs). This approach can lead to model-
plant mismatch and poor controller performance, because models
can be identified for decoupled IO pairs (no-model IO pairs). On
the other hand, our approach detects no-model IO pairs in a pre-
liminary stage of the identification process. The objective is the
detection of no-model IO pairs in a pre-identification stage, to
improve the effectiveness of the excitation signals in the identifi-
cation experiment and to increase the efficiency of the identifi-
cation algorithms. An extensive survey of methods for IO selection
can be found in Van der Wal and de Jager [19].

In MIMO systems, the models can be represented by transfer
matrices. When an output is not affected by the action of an entry,
the transfer function of this pair is zero and therefore it is said that
there is a zero in the transfer matrix in this position.

Frequently, it is necessary to identify the plant in closed-loop,
because it may be risky to open the control loops. In this sense, the
objective of this paper is to improve and to adapt the Fuzzy Input-
Output Detection (FIOD) method applicable to open-loop systems,
published by Potts et al. [14] to detect no-model IO pairs in closed-
loop MIMO systems.
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2. No-model IO selection methods

Several papers in the literature address the issue of the no-
model IO combination. The most common methods are based on
the controllability of the model. Methods based on controllability
of inputs and outputs seek to determine which candidate sets of
inputs and outputs will be eliminated or kept, based on a quan-
titative measure of this controllability. In this sense, several
methods apply the concept of controllability of inputs and outputs,
based on the singular value decomposition.

The methods based on the minimum singular value select candi-
date sets of inputs and outputs that maximize the smallest singular
value in defined frequencies. Some methods that implement or sup-
port this approach were proposed in Refs. [13,17,8,15], among others.
Similarly, other methods choose the maximum singular value to
transform a matrix into its simplest possible form, which is diagonal.

Although these methods present good reliability when used in
open-loop systems, they normally fail when used in the detection
of no-model IO combinations in closed-loop MIMO systems, be-
cause of the controller action. A properly designed and tuned
controller will lead the direct steady-state gains (main diagonal)
close to unity and inverted diagonal steady-state gains of the
transfer matrix close to zero (decoupling). Thus, inverted diagonal
IO combinations will have their closed-loop steady-state gains
approximately equal to zero and equal to each other, regardless of
being or not related (having a model or not).

2.1. Covariance and correlation analysis in closed-loop systems

The limitation of the methods based on correlation analysis
applied to detect no-model IO pairs in closed-loop MIMO systems
was first discussed in Box [3]. Afterwards, Vaillant et al. [18] dis-
cussed the use of correlation analysis methods for closed-loop and
showed how the control action distorts the determination of no-
model IO pair detection in closed-loop.

Next, a new approach to detect no-model IO pairs in closed-
loop MIMO systems is proposed. The analysis is based on covar-
iance and the correlation between the signals of the system. This
approach is a modification of the FIOD method proposed in Ref.
[14] for open-loop systems.

Fig. 1 shows a single closed-loop control of a multivariable
process. The signals and blocks presented in this figure are: set-
point ( )r tj , error signal ϵ ( )tj , controller ( )C qij , controller output ( )u tj ,
nominal model of the plant ( )G qij , disturbance of the process ( )e ti ,
process output ( )y ti and disturbance model ( )H qi , with = …i n1, ,
and with = …j m1, , , where m represents the number of inputs
and n the number of outputs.

Typically, the correlation analysis is carried out between the
process input ( )uj and the process output ( )yi , but due to the lim-
itations cited before, a new approach is suggested. Our analysis
consists of computing the covariance and the correlation between
the setpoint ( )rj and the process output ( )yi , not between ( )uj and
( )yi as is commonly done. Classical methods of IO pair detection fail

in closed-loop systems if only the relationship between process
variables (outputs) and input signals (setpoints) are analyzed.
However, in our analysis, the setpoint signals ( )rj and the con-
troller outputs ( )uj are used.

Consider firstly an open-loop system represented by the fol-
lowing equation:
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If Eq. (1) is multiplied by τ( + )u tj , we have:
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Next, we assume that expectation E refers to the stochastic
components of signal χ( )t and symbol Ē is defined by (3) as in
Ljung [9]:
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Then, by applying the expectation operator Ē in (2),
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If the input is subject to a quasi-stationary sequence with:
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and
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where (6) is valid only for open-loop systems, then in accordance
with Theorem 2.2 of Ljung [9],
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It can be demonstrated that if the input is not white noise, it is

possible to estimate the covariance ( ^ )Ru

N
and the cross-covariance

functions ( ^ )Ryu
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and by solving (9) it is possible to estimate the vector ^ ( ) −g k qij
k.

Consider again the closed-loop system described by (4). In
system identification, due to the manner in which the tests are
performed, the signals usually have zero mean. In such cases,
autocorrelation and cross-correlation functions match the auto-
covariance and cross-covariance functions [1]. The correlation
coefficient is proportional to the cross-covariance function be-
tween two variables. Therefore, it can be concluded that the vector
is proportional to the correlation coefficient.

Following the same approach used in the open-loop case, the
next result is obtained:Fig. 1. Diagram of the closed-loop system.
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