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a b s t r a c t

This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for
stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get
first-order exponential behavior, this is not always straightforward with significant under-damped
modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to
achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to
deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by
avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also
presented which utilises just real numbers while retaining the key attributes of simple algebra, coding
and tuning. The potential advantages are demonstrated with numerical examples and real-time control
of a laboratory plant.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

PFC (Predictive Functional Control) [1] is probably the most
successful industrial implementation of MPC (Model Predictive
Control) based on the numbers and breadth of applications. The
main reason for this is relatively simple in that the coding re-
quirements are similar to that for PID (Proportional-Integral-De-
rivative) controllers and thus the PFC strategy is a competitor with
PID rather than more expensive plant wide or system wide ap-
proaches. Moreover, it has some advantages over PID in that the
tuning mechanism is intuitive being based mainly on a desired
time constant (equivalently settling time or convergence rate) and
also it embeds a reasonable level of systematic constraint handling
using relatively low computational complexity.

Nevertheless, the main weakness of conventional PFC is the
same as its strength, that is the relative simplicity [2,3]. Although
execution and coding are straightforward for systems with over-
damped or simple dynamics, a different picture emerges with
systems with less desirable open-loop dynamics [4]. Consequently,
although a conventional PFC [1] can work with systems of in-
tegrators, open-loop unstable processes and non-minimum-phase
characteristics, often the tuning is difficult and the implementa-
tion less simple and intuitive. Thus one purpose here is to develop

a modified PFC approach which retains the core attributes of
simplicity but more specifically, retains intuitive insight during the
design which means the approach is simple for technicians to
deploy.

Predictive control algorithm can be calculated by properly
planning the manipulated signal sequence via minimizing a cost
function. The idea of pole-placement design for predictive control
is not new. Pole-placement state-feedback design for optimizing
continuous-time predictive control was applied in [5] and ex-
tended this algorithm for the constrained case in [6]. GPC (Gen-
eralized Predictive control) [7] has two degrees of freedom and
allows a design based on pole-placement, see [8] and [9]. In-
vestigations of the stability of PFC for first-order process models
[10] were followed by a pole-placement PFC controller re-
commended for higher-order, over-damped processes in [11].

This paper has a focus on systems with significant under-
damped dynamics in the open-loop and first considers the efficacy
of a routine PFC implementation. It is demonstrated via a number
of examples, that the efficacy is variable which motivates the need
for an improved algorithm. Earlier literature has discussed the
possibility of shaping the input predictions [4], but although often
effective, that approach has the disadvantage of requiring some
moderately difficult algebra/coding and there is still a need to fully
understand the robustness to uncertainty of such approaches. This
paper takes an alternative approach which is to explore and de-
velop a recently proposed alternative the PP-PFC (Pole-Placement
PFC) [11]. The main contribution here is to consider the extent to
which this approach is suitable for handling under-damped
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systems. Moreover, as will be seen, a secondary benefit is addi-
tional flexibility in the choice of target poles to include mild un-
der-damping; such an option is not available to conventional PFC.

A simplistic implementation of the proposed PP-PFC algorithm
for underdamped systems is shown to rely on complex number
algebra and this has some possible negative consequences. Firstly,
the computational effort is slightly greater, although that could be
considered trivial in practice. Secondly however, the requirement
for complex number algebra in itself could be a problem as many
low level process control units (where PFC would be applied
alongside competitor approaches such as PID) do not support
complex number algebra. In view of these observations, a second
contribution of this paper is to propose algorithms which cir-
cumvent the complex number algebra in a relatively simple fash-
ion, thus allowing straightforward coding, maintenance and
tuning.

Section 2 will give a basic background on conventional PFC and
demonstrate the potential difficulties when applying this to un-
der-damped systems. Section 3 will introduce the pole-placement
PFC approach for systems with real poles followed by Section 4
which will discuss how this approach is extended to cope with
complex poles, that is under-damped systems. Section 5 will then
develop an alternative formulation of PP-PFC which uses just real
number algebra. Section 6 gives numerical examples and also
some simulations on hardware.

2. Background of PFC

This section gives a brief review of a basic PFC algorithm and
demonstrates a normal tuning procedure.

2.1. PFC concepts

The basic principle underlying PFC approaches is that the de-
sired output dynamic is close to that of a first-order response with
a specified pole λ. The hope is that if one, recursively at each
sample, ensures the prediction of the system behavior is close to
the desired dynamic, then the closed-loop behavior is likely to be
close to that dynamic. Hence, for a desired steady-state set value of
r, a typical target trajectory *r , expressed in discrete time, takes
the form1:
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In the interest of simple computation, PFC differs from more
standard MPC approaches in that it uses the prediction at just a
single point, the so called coincidence horizon, here denoted by a
ny step ahead prediction. The control law is defined by forcing the
system prediction to match the target dynamic of *( )r k at a point
ny steps ahead, as illustrated in Fig. 1.

In practice, the system output yp(k) is not beginning from zero,
so the target trajectory is one which follows a first-order dynamic
from the current point yp(k) to the correct steady-state, that is:
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PFC is defined by forcing coincidence ny steps ahead and thus
the control law is defined from the equality:
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Mismatch between process output yp and model output ym is
assumed constant during the prediction horizon and hence offset-
free tracking can be achieved with a minor modification to take
account of this bias. The system prediction is given by the model
prediction plus an estimated disturbance d(k) (variants of this exist
but are not central to the current paper):

( + ) = ( + ) + ( ) ( ) = ( ) − ( ) ( )y k n y k n d k d k y k y k, . 4p y m y p m

Simplification 1. The ny steps ahead prediction ( + )y k np y de-
pends upon the future choices of control actions. As PFC is pre-
mised on being as simple as possible, a typical assumption is that
the future inputs remain constant, that is ( ( + ) = ( ) ≥u k i u k i, 1).
This has the advantage that only one decision variable is needed so
the desired selection to satisfy (3) is straightforward to code (this
also applicable with non-linear processes).

Simplification 2. In order to maintain simple coding, PFC over-
comes the complexity of prediction algebra by using partial frac-
tions to express the nth-order model Gm(z) as a sum of first-order
models [1,2,12] and hence:
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The effective structure of the model is illustrated in Fig. 2
where Gp represents the real (unknown) process and Gi denote the
partial fraction expansion of the assumed model Gm(z). In practice
this means that the independent model deployed in PFC code
comprises a number of first-order independent models running in
parallel; clearly the coding and computation requirement for each
is trivial.

The advantage of this parallel formation is that ny steps ahead
predictions can be defined explicitly and without the need for
costly or cumbersome prediction algebra [13]. To be precise, the
predictions for the model can be expressed as the sum of the
predictions of a number of first-order models with component
outputs ( )ym

i , that is:

Fig. 1. Illustration of PFC target dynamic *r and coincidence of the output pre-
diction yp with target dynamic ny ¼ 6 samples ahead.

1 In the following the case of a stepwise change in the reference signal is as-
sumed. The same algorithm works for stepwise change in the output additive
disturbance, as well.
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