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Abstract:
This paper investigates the stability of discrete-time linear systems with stochastic delays. We
assume that delays are modeled as random variables, which take values in integers with a certain
probability. For the scalar case, we provide an analytical bound on the probability to guarantee
the stability of linear systems. In the vector case, we derive a linear matrix inequality condition
to compute the probability for ensuring the stability of closed-loop systems. As a special case, we
also determine the step size of gradient algorithms with stochastic delays in the unconstrained
quadratic programming to guarantee convergence to the optimal solution. Numerical examples
are provided to show the effectiveness of the proposed analysis techniques.
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1. INTRODUCTION

With the rise of networked control systems, the analysis of
dynamical systems with stochastically varying delays has
received an increased attention. Communication delays
in networked systems evolve in a random fashion due to
retransmissions of (randomly) lost packets, the use of ran-
dom access protocols that wait for the network to become
idle to avoid collisions, etc. Guaranteeing the stability of
dynamical systems where delays vary stochastically is a
challenging task. To tackle the difficulty in the analysis
and design, one can consider the worst-case scenario (i.e.,
the largest delay) but it is not always possible to give a
deterministic worst-case bound, and even when an upper
bound on the delays can be guaranteed, always considering
the worst-case can result in unnecessary conservatism.
Therefore, there is a need for new techniques to analyze
stability of linear systems with stochastic delays.

Several results are available on stability of linear systems
with stochastic delays; see (Antunes et al., 2012, 2013;
Demirel et al., 2015, 2013; Gomez et al., 2013; Nilsson,
1998; Xiao et al., 2000). Nilsson (1998) assumed that the
communication delay may not grow larger than the sam-
pling interval, and designed an optimal controller without
considering any packet losses. In case time delays are larger
than one sampling period, Xiao et al. (2000) aimed at
designing a set of output feedback controllers for linear sys-
tems with random, but bounded, delays that are modeled
as finite-state Markov chains. Gomez et al. (2013) consid-
ered linear discrete-time systems with bounded stochas-
tically varying delays, and provided a method to inves-
tigate the convergence of the mean and second moment
of scalar systems. Later, Gomez et al. (2014) proposed

necessary and sufficient stability conditions to ensure the
mean-square stability of linear discrete-time systems with
bounded stochastic delays. In a different line of work,
Verriest and Michiels (2009) provided results for several
notions of stability of continuous-time linear systems with
unbounded stochastic delays.

Research in networked control systems has mainly focused
on bounded delays and packet losses. However, it is also
possible to observe unbounded delays in networked sys-
tems. For instance, Schenato (2009) considered the case
where control messages are transmitted over an unreliable
communication channel between the controller and the
actuator. When the packet sent from the controller to the
actuator is lost, the actuator holds the previous control
signal. This problem can be represented as a linear system
with unbounded random delays. This kind of delays can
also appear when multiple plants share the same commu-
nication network if a stochastic scheduling protocol is used
to orchestrate the medium access and actuators hold their
most recently received value in the absence of new data.

In the present paper, we focus on the stability of linear
discrete-time systems with stochastically varying, possibly
unbounded, delays. These delays are modeled as random
variables that increase with probability (1 − p) and are
reset to zero with probability p. For scalar systems, we
provide an analytical condition which guarantees mean-
square stability. For higher-order systems, we derive an
LMI-based stability test. Finally, we apply the developed
techniques to gradient-descent based optimization under
stochastic delays and determine the range of step-sizes that
guarantee convergence to the optimum.
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1. INTRODUCTION

With the rise of networked control systems, the analysis of
dynamical systems with stochastically varying delays has
received an increased attention. Communication delays
in networked systems evolve in a random fashion due to
retransmissions of (randomly) lost packets, the use of ran-
dom access protocols that wait for the network to become
idle to avoid collisions, etc. Guaranteeing the stability of
dynamical systems where delays vary stochastically is a
challenging task. To tackle the difficulty in the analysis
and design, one can consider the worst-case scenario (i.e.,
the largest delay) but it is not always possible to give a
deterministic worst-case bound, and even when an upper
bound on the delays can be guaranteed, always considering
the worst-case can result in unnecessary conservatism.
Therefore, there is a need for new techniques to analyze
stability of linear systems with stochastic delays.

Several results are available on stability of linear systems
with stochastic delays; see (Antunes et al., 2012, 2013;
Demirel et al., 2015, 2013; Gomez et al., 2013; Nilsson,
1998; Xiao et al., 2000). Nilsson (1998) assumed that the
communication delay may not grow larger than the sam-
pling interval, and designed an optimal controller without
considering any packet losses. In case time delays are larger
than one sampling period, Xiao et al. (2000) aimed at
designing a set of output feedback controllers for linear sys-
tems with random, but bounded, delays that are modeled
as finite-state Markov chains. Gomez et al. (2013) consid-
ered linear discrete-time systems with bounded stochas-
tically varying delays, and provided a method to inves-
tigate the convergence of the mean and second moment
of scalar systems. Later, Gomez et al. (2014) proposed

necessary and sufficient stability conditions to ensure the
mean-square stability of linear discrete-time systems with
bounded stochastic delays. In a different line of work,
Verriest and Michiels (2009) provided results for several
notions of stability of continuous-time linear systems with
unbounded stochastic delays.

Research in networked control systems has mainly focused
on bounded delays and packet losses. However, it is also
possible to observe unbounded delays in networked sys-
tems. For instance, Schenato (2009) considered the case
where control messages are transmitted over an unreliable
communication channel between the controller and the
actuator. When the packet sent from the controller to the
actuator is lost, the actuator holds the previous control
signal. This problem can be represented as a linear system
with unbounded random delays. This kind of delays can
also appear when multiple plants share the same commu-
nication network if a stochastic scheduling protocol is used
to orchestrate the medium access and actuators hold their
most recently received value in the absence of new data.

In the present paper, we focus on the stability of linear
discrete-time systems with stochastically varying, possibly
unbounded, delays. These delays are modeled as random
variables that increase with probability (1 − p) and are
reset to zero with probability p. For scalar systems, we
provide an analytical condition which guarantees mean-
square stability. For higher-order systems, we derive an
LMI-based stability test. Finally, we apply the developed
techniques to gradient-descent based optimization under
stochastic delays and determine the range of step-sizes that
guarantee convergence to the optimum.
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2. NOTATIONS AND PRELIMINARIES

2.1 Notations

We write N for the positive integers and N0 for N∪{0}. Let
Rn denote the set of real vectors of dimension n. Vectors
are written in bold lower case letters and matrices in
capital letters. The set of all real symmetric positive semi-
definite matrices of dimension n is denoted by Sn�0. For a

square matrix A, λ1(A) denotes its minimum eigenvalue
and λn(A) denotes its maximum eigenvalue in terms of
magnitude. The notation{xk}k∈K stands for {x(k) : k ∈
K}, where K ⊆ N0. The probability of an event Ω is
denoted by P

(
Ω
)
. When χ is a stochastic variable, E[χ]

stands for the expectation of χ.

2.2 Preliminaries

Next, we review the key definitions and results necessary
for developing the main results of this paper.

We consider the stochastic linear system described by

x(k + 1) = Aθ(k)x(k) , (x(0), θ(0)) = (x0, θ0) , (1)

where x(k) ∈ Rn is the state vector,Aθ(k) is a mode depen-
dent matrix with appropriate dimensions, and {θ(k)}k∈N0

is an independent and identically distributed random pro-
cess with probability distribution {p0, p1, · · · , pN}. This
process represents mode of the system and it takes on
values in the discrete space {0, 1, · · · , N} ⊆ N0.

Definition 1. (Ji et al. (1991)). The system (1) is called
as mean-square stable if, for every initial state (x0, θ0),

lim
k→∞

E
[
xᵀ(k)x(k)

]
= 0 .

Theorem 2. (Costa et al. (2005)). The system (1) is
mean-square stable if and only if there exists a positive-
definite matrix X ∈ Sn�0 that satisfies

X −
N∑
i=0

piAᵀ
i XAi > 0 , (2)

for all i ∈ {0, 1, · · · , N}.

It is worth noting that the result in Theorem 2 can be
extended for countably infinite number of systems (i.e.,
N → ∞) in essence of geometric distribution. Due to the
page limitation, we omit this extension.

Definition 3. Suppose that A ∈ Rn×n. Then, the sequence
{Sn}n∈N0

defined by

Sn � I+A+A2 + · · ·+An−1 , (3)

is called the geometric series generated by A.

Theorem 4. The geometric series generated by A con-
verges if and only if λi(A) < 1 for each eigenvalue of A. If
this condition holds, then (I−A) is invertible, and

Sn �
n−1∑
i=0

Ai = (I−A)−1(I−An) , (4)

converges to
∞∑
i=0

Ai = (I−A)−1 . (5)

Lemma 5. The discrete-time algebraic Lyapunov equation

X − pAᵀXA = Q , (6)

where A ∈ Rn×n and X,Q ∈ Sn�0, has a unique solution if

and only if pλn(A)2 < 1. The unique solution of (6) can
be expressed as an infinite series:

X =

∞∑
k=0

pk(Aᵀ)kQAk . (7)

3. PROBLEM FORMULATION

Consider the following linear dynamical system with
stochastic time-varying delays

G : x(k + 1) = Ax(k) +Bx
(
k − d(k)

)
. (8)

Here, x ∈ Rn is the state vector, and A,B ∈ Rn×n are
system matrices. The time delay in system G is modeled
by a sequence {d(k)}k∈N0

of random variables taking their
values in N0, and it evolves according to:

d(k + 1) =

{
0, with probability p,

d(k) + 1, with probability 1− p,
(9)

with d(0) = 0.

Let us define {l(t)}t∈N0
as a sequence of increasing integers

keep tracking the update moments, i.e.,

l(t) � min{k ≥ l(t− 1) + 1 : d(k) = 0, k ∈ N0},
with l(0) = 0. Moreover, for t ∈ N0, we define z(t) �
x(l(t)) and θ(t) � d(l(t) − 1). Now, by combining (8)
and (9), system G can be described by the following jump
linear system:

G′ : z(t+ 1) = Aθ(t)z(t), z(0) = x0 , (10)

where

Ai = Ai+1 +

i∑
j=0

AjB,

when θ(t) = i. The probability having Ai can be obtained

as P(θ(t) = i) � p(1− p)i.

Our goal is to study the mean-square stability of stochastic
linear systems of the form (8) and (9).

4. STABILITY ANALYSIS IN CONTROL SYSTEMS

4.1 First-order systems

For pedagogical ease, we first restrict our attention to
the case when G is a first-order system (i.e., n = 1). To
emphasize that A and B are scalars, we write A = a and
B = b.

Theorem 6. Suppose that |a| > 1 and |a + b| < 1. The
system (8) with random delays, governed by (9), is mean-
square stable if

p >
(a+ 1)(a− b− 1)

a− ab+ a2
. (11)

Theorem 6 provides a sufficient condition for the mean-
square stability of first-order systems of the form (8)
and (9). Since |a + b| < 1, the delay-free system (p = 1
and, hence, d(k) = 0) is asymptotically stable. On the
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