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A B S T R A C T

Some new results are presented concerning the forces between two equal circular electrodes of finite thickness.
For close electrodes different scenarios result, depending on the thickness and on the ratio of charges of the
conductors. Attractive or repulsive forces can appear depending on the parameters and on the separation of the
electrodes. The force between the electrodes can be non monotonic as a function of the distance and one or more
equilibrium points can appear. A unified description of cylindrical systems using a high precision method based
on a Galerkin expansion is given and we check our results with a quite accurate boundary element method
(BEM).

1. Introduction

The problem of the two discs capacitor has a long tradition in the
physical and mathematical literature. In particular, the behaviour of
capacitance for close approach of the plates has been studied by
Kirchhoff in his pioneering work [1] and the results for the case of flat
discs have been brought to a higher degree of approximation in Refs.
[2–5]. The formulation of the problem in terms of a dual integral
equation in Refs. [6–9] allowed a powerful analytical and numerical
framework for the problem and permitted a rigorous derivation [10] of
Kirchhoff's result for flat discs (see eq. (10) below). The logarithmic
divergence in the subleading term of Kirchhoff formula is produced by
an excess of charge density ∼σ xΔ 1/ , near the edge, where x is the
distance from the edge. This is a general behaviour for a capacitor
composed by two flat, parallel and equal conductors. The overall excess
charge is obtained by integration of σΔ along the contour, giving the
logarithmic correction (see p. 18 of [11]). A generalization of these
results in the case of flat discs of different radii has been presented in
Refs. [12,13]. The computation of capacitance coefficients is clearly of
some interest in itself. In this respect, the main result obtained in this
work is a systematic correction to the Kirchhoff approximation [1,14]
for the mutual capacitance C at short distances when thick discs are
considered.

From a different point of view, the study of the forces between
conductors has received new attention after the work [15] where it was
found that, in general, two spheres at close approach attract each other
even if bringing charges of the same sign. A similarly surprising, but
opposite, result emerges for planar electrodes for which a repulsive
force can occur when the distance between the plates is very short even

if the plates bring charges of opposite sign. In Refs. [13,16,17] it is
discussed how this different behaviour depends on the difference be-
tween the quadrupole-like charge distribution present for discs and the
polarizability effect, dominant in the case of spheres, and absent for flat
plates. For definiteness, let us consider the case of two flat discs with
positive and different charges >Q Q1 2. Disc 1 push a positive charge
toward the edge of disc 2 creating a negative density in the bulk
overlapped region. The interior part of the discs tend to attract each
other and the edges, likely charged, repel. The prevailing contribute
depend on the geometry and on the ratio Q Q/1 2 and, consequently, the
features of the force at close approach is not generally predictable a
priori. However, our general analysis allows us to state that for equal
electrodes with a planar contact, there is always a finite gap around the
ratio =Q Q/ 11 2 in which the force is repulsive. This statement can be
easily generalized to different electrodes with a planar contact zone, see
the discussion after equation (32). A limit case is obtained for two equal
flat conductors, where the repulsive force due to edges is logarith-
mically divergent overcoming anyway the attractive finite force due to
the interior except the particular case = −Q Q1 2. This effect is rigor-
ously proved for equal flat disks in Refs. [13,17] and extended nu-
merically to equal square electrodes in Ref. [16]. For realistic capacitors
new scales enter into the problem, in particular for circular electrodes
we can have the difference between the radii and the thickness of the
material. It is expected that these scales provide a cutoff to the loga-
rithmic divergence leading back to the general scenario sketched above.
This expectation has been confirmed analytically and numerically in
Ref. [13] in the case of two flat disks of different radius, and is expected
to hold also for thick electrodes. A major physical motivation of this
work is the confirmation of this hypothesis.
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The problem of forces between two close conductors has an obvious
importance in the physics of nano-electromechanical systems (NEMS).
The measure of subtle effects as Casimir forces, requires a control on
various effects, the main being the elastic stresses and the electrostatic
forces, see for example [18,19].

The numerical results are obtained by an application of the Galerkin
method, and checked by an accurate version of Boundary Element
Method (BEM), where both source and field patches are integrated.
Almost all the matrices needed in the Galerkin method were calculated
analytically allowing to obtain a high precision in the results. For
shortness we omit the mathematical details and the applications to
other interesting problems, these topics are covered in Ref. [20].

The paper is organized as follows. In section 2 we give a short
discussion of the physics of the system and review briefly the mathe-
matical techniques used in this work. In section 3 we present our results
for the capacity matrix for different values of thickness. In this section
we discuss on a small deviation from Kirchhoff approximation. In sec-
tion 4 we apply the previous results to the study of forces, constructing
a “phase diagram” which allows to identify for which values of thick-
ness and ratio of charges, the two electrodes attract or repel at short
distance. Some examples of the relation force vs distance are shown,
exhibiting some possible behaviours. In section 5 we summarize our
results and point out some possible extensions.

2. Physical discussion of the system

In a system of conductors the charges Qi and the potentials Vi are
related by
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where Mij, the potential matrix, is the inverse of the symmetric capa-
citance matrix Cij. In terms of these matrices the energy takes the form
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In the following, we consider two equal and parallel discs of radius a
and thickness b (see Fig. 1). The symmetry of the problem implies

=C C11 22 (and =M M11 22). The distance between the nearest surfaces of
the two electrodes will be denoted by ℓ. a is our unit of length and we
use dimensionless variables =κ aℓ/ , ≡ =τ h b a2 / . For =τ 0 the con-
ductors degenerate in two flat discs. Having to compare different con-
figurations of the system, the functional dependences on τ and κ will be
written explicitly as C τ κ[ , ]ij , when necessary.

In Refs. [12,13,16,17] it has been pointed out that the capacitance

coefficients can be organized in a hierarchy depending on their beha-
viour for →κ 0. In particular, the sum +C C11 12 stays finite in the limit
→κ 0. Therefore, it is useful to consider as independent quantities
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C is the usual mutual capacity, i.e. the quotient between the charge on
one electrode and the potential difference when the two electrode are
held at opposite charges. The total sum Cg of the matrix elements Cij
tends, in the limit →κ 0, to the capacity of the conductor obtained by
the “fusion” of the two elements: in the present case a cylinder of
thickness τ2 . Using the notation C1 for this capacity, the above state-
ment reads
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In terms of the above quantities the force between the two elec-
trodes can be written [16]

= − ∂
∂

= + ∂
∂

+ − ∂
∂

F W Q Q
C

C Q Q
C

C
ℓ

1
4

( )
ℓ

1
8

( )
ℓ

.
g

g
1 2

2

2
1 2

2

2
1

1
(5)

In our works mentioned above it is shown that the second term in
(5) produces a constant attractive force at short distances, for planar
contacts of flat electrodes. The first term is in general repulsive, and in
the particular case of two equal discs it is logarithmically divergent
[13,17] for →κ 0. In the following we will show how this behaviour is
smoothed by the thickness.

The results for planar discs ( =τ 0) follow from the analytical known
behaviour for →κ 0:
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and
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A summary of these results and the comparison with numerical
computations is given in Ref. [13].

For the case ≠τ 0, to our best knowledge, the only known result is
the original computation of Kirchhoff [1,14], confirmed in Ref. [2].
Here and in the following the quantities referred to Kirchhoff's calcu-
lation are denoted with the subscript K.
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while for Cg1 we have, from (4)

⎯ →⎯⎯⎯
→

C τ κ C τ[ , ] 1
2

[2 ] .g
κ 0

11 (9)

Formula (8) exhibits clearly the problem introduced by the thick-
ness. In the region ≪ ≪b aℓ , i.e. ≪ ≪τ κ 1, the system is to all effects
equivalent to a capacitor composed by two planar discs, but for
≪ ≪κ τ 1 the approach for →κ 0 changes. From (8) for →τ 0
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in agreement with (6). In the limit →κ 0 at fixed τ we have instead,
from equation (8)
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Fig. 1. Sketch of the discs. Thickness of each disc: =b τa. Distance between
discs. = κaℓ .
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