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A B S T R A C T

Charges inside a dielectric object embedded in a dissimilar dielectric medium polarize the surrounding medium,
which in turn makes a contribution, called the reaction field, to the electric field inside the object. In this work,
we develop complete image systems for the reaction field inside a prolate or oblate spheroidal dielectric object
embedded in an infinite dissimilar dielectric medium. In either case, an image system consists of a point image
and a symmetric surface image over an exterior confocal spheroid that passes through the point image. As an
application, the point image is applied into the generalized image charge solvation model (GICSM) and is tested
in simulations of liquid water, and the results are analyzed in comparison with those obtained from the ICSM
simulation as references. The results indicate that, for both the prolate and oblate cases, the single point image
charge approximation for the reaction field inside the dielectric cavity of the model is good enough for the
GICSM to faithfully reproduce typical static and dynamic properties of the liquid water at least when the
spheroidal cavity has relatively small eccentricity.

1. Introduction

Consider a point charge q located at point = x y zr ( , , )s s s s inside a
dielectric object of electric permittivity εi that is embedded in a dis-
similar dielectric medium of electric permittivity εo. The charge po-
larizes the surrounding dielectric medium, which in turn makes a
contribution, called the reaction field, to the electric field inside the
object. The electric potential at point r inside the object is thus given by

= − +q πr r r rΦ( ) /(4 ) Φ ( )s RF . Such a problem may find its application
in solvation models for biomolecular simulations [1–3], for an example.

In this work, we aim to develop an image system for the reaction
field rΦ ( )RF , a system of fictitious sources, commonly called images,
outside the object that produces the same potential as rΦ ( )RF inside the
object. In the highly symmetric case that the object is spherical with
radius a, it is now a textbook result that an image system may consist of
one point image at the Kelvin image point = a rr r( / )Kelvin s

2
s and a line

image that extends from the Kelvin image point radially to infinity
[4,5]. On the other hand, only a few studies have been dedicated to
image theories for spheroidal objects [6–8], and most of them were
limited to the axisymmetric case in which an exterior point charge is on
the axis of symmetry. In addition, image theories have been developed
for Green's function for the Laplace operator in both the prolate
spheroidal geometry [9] and the general ellipsoidal geometry [10]. For

example, an image system for the interior Green's function for the La-
place operator in the prolate spheroidal geometry may consist of a point
image and a symmetric surface image over an exterior confocal prolate
spheroid [9]. In the present work, we shall apply the same idea as used
in Ref. [9] to develop an image system for the reaction field inside a
prolate or oblate spheroidal dielectric object embedded in an infinite
dissimilar dielectric medium.

Let the boundary S of a prolate spheroidal dielectric object be de-
fined by

+ + =x y
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z
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2
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where > >b a 0. Here the z-axis is the focal symmetry axis, and the
interfocal distance is c2 with = −c b a2 2 ; see Fig. 1.

The prolate spheroidal coordinates ξ η ϕ( , , ) are defined through
[11]

= − −x c ξ η ϕ( 1)(1 ) cos ,2 2 (2a)

= − −y c ξ η ϕ( 1)(1 ) sin ,2 2 (2b)

=z cξη, (2c)

where ∈ +∞ξ [1, ), ∈ −η [ 1,1], and ∈ϕ π[0,2 ] are the radial, angular,
and azimuthal variables, respectively. The coordinate surface of
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constant ≥ξ 1 is a prolate spheroid, denoted by Sξ , confocal to the re-
ference prolate spheroid S of this coordinate system. In particular,

=S ξ ξ:ξ bb with =ξ b c/b is the prolate spheroid S, and =S ξ: 11 corre-
sponds to the focal line of the prolate spheroid S, respectively. Note
that, in general, a confocal prolate spheroid Sξ specified by some con-
stant >ξ 1 can be written as
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−
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We assume, without loss of any generality, that the point charge q is
located at point rs in the plane =y 0 inside the spheroid so
= x zr ( , 0, )s s s or = ξ ηr ( , , 0)s s s with ≤ <ξ ξ1 s b. Then the reaction field

at point r inside the spheroidal object ( ≤ <ξ ξ1 b) is given by the series
expansion [12]:
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Here, P x( )n
m and Q x( )n

m , = ⋯n 0,1, and = ⋯m n0,1, , , are the as-
sociated Legendre functions of the first and second kinds, respectively,
and
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where δm0 is the Kronecker delta. Note that P x( )n
m and Q x( )n

m with real
argument >x 1 and non-negative integer degree n and order m with
≥n m are often called the prolate spheroidal harmonics of the first and

second kinds [13], respectively.
In Ref. [3], the reaction field is computed by the point image charge

approximation:
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The point image charge approximation of the reaction field rΦ ( )RF
by (4) is easy to use; it was, however, obtained by an intelligent but still
empirical guess [3]. In addition, the location of this point image, rProlate,
does not depend on the dielectric constants of the system. In this work,
we first aim to develop another point image charge approximation for
the reaction field rΦ ( )RF inside a prolate spheroidal object that is
mathematically more rigorous, and whose strength and location shall
both depend on the dielectric constants of the system.

To conclude this section, we briefly review some related elements of
the surface prolate spheroidal harmonics defined as

=C η ϕ P η mϕ( , ) ( )cos( ),n
m

n
m

=S η ϕ P η mϕ( , ) ( )sin( ),n
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for = ⋯n 0,1, and = ⋯m n0,1, , . They are orthogonal over a confocal
prolate spheroid Sξ with respect to the geometrical weighting function:
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Indeed, we have the following orthogonality relation:
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where δij is the Kronecker delta, the differential surface element over Sξ
is

=s η ϕ h h η ϕd ( , ) d d ,ξ η ϕ

with the metric coefficients for the prolate spheroidal coordinates being
given by

= − −h ξ η c ξ η ξ( , ) ( )/( 1) ,ξ
2 2 2

= − −h ξ η c ξ η η( , ) ( )/(1 ) ,η
2 2 2
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and the normalization constant γmn is
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The surface prolate spheroidal harmonics form a complete set of
eigen-functions over Sξ . As such, any smooth function f defined over Sξ
can be expanded in terms of the surface prolate spheroidal harmonics.
Furthermore, if f is even with respect to ϕ, then it can be expanded in
terms of only the even surface prolate spheroidal harmonics C η ϕ( , )n

m ,
namely,
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with the coefficients cmn given by
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2. Image system for the reaction field inside prolate spheroidal
objects

As mentioned earlier, an image system for the reaction field rΦ ( )RF
inside a dielectric object is a system of fictitious sources outside the

Fig. 1. A prolate spheroid is centered at the origin, its focal symmetry axis is aligned with
the z-axis, and the interfocal distance is c2 . In terms of the prolate spheroidal coordinates
ξ η ϕ( , , ) defined in the main text, the prolate spheroid is represented by =ξ ξb. A point

source q is located at = ξ ηr ( , , 0)s s s inside the prolate spheroid. The spheroidal object has

dielectric permittivity εi, while the infinite surrounding exterior to the object has di-
electric permittivity εo, respectively.
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