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a b s t r a c t

The design of capacitive sensors and devices for new and emerging applications would benefit from
simple and reliable methods to estimate the capacitance between conductors in terms of the capacitance
of the isolated bodies and of the distance between them. The coefficients of potential and capacitance of
a pair of conductor are approximated with the first terms of an expansion formula in the inverse of their
distance. The form given applies to conductors of generic shapes and position in space. A comparison
with the exact value for two spheres shows agreement even for rather small distances.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that a formal calculation of capacitance co-
efficients of a system of conductors can be achieved through the
Green's function method [1], but closed and exact analytic ex-
pressions are possible only for certain symmetries. Moreover, nu-
merical algorithms [2] are generally cumbersome ad time-
consuming, being bound, for each single calculation, to an indi-
vidual choice of parameters. On the other hand, the wide spread of
capacitive sensors and devices makes it interesting to have simple
and roughly reliable methods to estimate the capacitance of a
couple of conductors in terms of the capacitance of the isolated
bodies and of the distance among the conductors. Particularly, it
could be useful to dispose of analytical forms describing accurate
asymptotic behaviours when a quite wide separation among elec-
trodes with respect to their dimensions occurs. The application of
the Green's function method in conjunction with a perturbative
approach gives the first terms of an expansion of the coefficient of
capacitance for a generic pair of conductors in power of the inverse
of the distance of their centres of charge, having as parameters the
electrical polarizability, the electric quadrupole coefficient and the
intrinsic capacitance of each of the two bodies.

Asymptotic formulas for coefficients of capacitance and poten-
tial in particular cases were given since the unprecedented work of

J.C.Maxwell [3] both in the near limit and in the far limit regimes,
i.e. when the two conducting bodies are very near or very far each
other. Specifically, in Maxwell's Treatise the case of two spherical
conductors is considered and the exact solution has been written
expanding it in power of the distance between the center of the
spheres providing manageable formulas which differ in the regions
of validity less than one per cent from the exact solution. Even
recently, some works were devoted to a critical analysis of
approximate formulas in the two regimes [4] [5], for the case of
spheres. Valuable would be an approximate formula for the co-
efficients of capacitance and potentials in the far limit with no re-
striction on the shape and the orientation of the conductors. The
results given has general validity and its comparison with cases in
which the coefficients are known analytically or numerically are
satisfactory. The calculus appears also useful for applications as the
precise knowledge of the asymptotic form in the far limit together
with the discrepancy of the measured value should indicates the
presence and themagnitude of external disturbances in the system.

The paper is organized as follows. Section 2.1 provides the
derivation of the result based on a physical description of the sys-
tem. The result is confirmed in a moremathematical way in Section
2.2. Section 3 contains a comparison with some analytical results
and a brief discussion on the accuracy of the result with respect to
possible experimental measures.
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2. Method

2.1. Physical derivation of the result

The charges Qi on the surfaces of a system of conductors
(i ¼ 1,2,…,N) at equilibrium are a linear superposition of the uni-
form potentials Vi of the bodies:

Qi ¼ CijVj; Vi ¼ MijQj: (1)

Repeated indices are summed. The coefficients Cij form the
capacitance matrix C and depend on the geometry of the problem
(shapes, distances etc.). The matrixM ¼ C�1 is the potential matrix.
C and M are symmetric matrices.

Our goal is to give a simple expression for these matrices in the
case of a system of two conductors, a,b, at large distance R, specified
below, compared to their sizes, as a function of few intrinsic pa-
rameters of the separated bodies. The leading order in the expan-
sion is given in textbooks [6]:
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The computation will be extended to the next order, 1/R3 for Cab
and 1/R4 for diagonal elements.

The simplest starting point is to consider the energy of the
system expressed in terms of the matrix M

U ¼ 1
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MaaQ2

a þMabQaQb þ
1
2
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2
b : (3)

Up to order 1/R4 this energy can be written as the sum of three
contributions: (a) a self-energy term, (b) an interaction term, and
(c) an induced dipole term. In order to define uniquely the co-
efficients of the expansion it is necessary to specify more precisely
the distance R. Our choice is to define R as the distance between the
centres of charge of the isolated bodies. This choice is particularly
convenient as the intrinsic dipole vanishes and the form of the
coefficients results simpler (see also Section 2.2). For those reasons,
it is maintained at each step of the computation.

a) A self energy term:
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Ca,Cb are the self-capacitance of the conductors, and are supposed
known.

b) The interaction energy for fixed charge distribution, i.e. for the
distribution of charges in equilibrium for isolated conductors.
With the convention for R specified above, the interaction en-
ergy is

Uint ¼ QbFaðbÞ þ 1
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Dða;bÞ
ij denotes the quadrupole for unit charge of the conductors and

Fa(b) is the value of the potential generated by the conductor a at
the center of the conductor b. The same convention is used for
derivatives and similarly forFb(a). For our needs is sufficient to take
only the first few terms of the multipole expansion
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and the similar expression for Fb(a). n ¼ R/R is the unit vector
between the two centres. Let us note that our choice for R has
excluded the dipole interaction term in (5) and consequently, the
term proportional to 1/R2 in (6).

Substituting (6) in (5) and taking the derivatives an easy
computation gives
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c) A third term is due to induced dipoles in the conductors:

Udip ¼ �1
2
a
ðaÞ
ij EðbÞi ðaÞEðbÞj ðaÞ þ ða4bÞ (8)

E is the electric field and the notation is the same as for the po-
tentials. It is worth to note that even if the dipole of the isolated
body vanishes, an external electric field at the chosen coordinate
origin gives rise to an induced dipole. In (8) EðaÞj ðbÞ is the j-th car-
tesian component of the electric field generated by conductor a at
points of the conductor b. In our approximation, it is sufficient to
take only the leading coulombic term E ¼ Qn/R2 and substituting in
(8) we have
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The sum of the three contributions (4, 7, 9) has the form (3) with
the matrix M given by
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with the notation
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Inversion of (10) gives to order 1/R4
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The first order in this expansion in given in any textbook, see e.g.
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