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Abstract:

We provide a distributed coordinated approach to the stability analysis and control design of large-
scale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation
the large-scale system is decomposed into a network of interacting subsystems and the stability of the
system is analyzed through a comparison system. However finding such comparison system is not trivial.
In this work, we propose a sum-of-squares based completely decentralized approach for computing the
comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we
introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinate
with their immediate neighbors to design local control policies that can exponentially stabilize the full
system under initial disturbances. We illustrate the control algorithm on a network of interacting Van der

Pol systems.
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1. INTRODUCTION

Distributed coordinated control has recently provided power-
ful control solutions when the conventional centralized meth-
ods fail due to inevitable communication constraints and lim-
ited computational capabilities. Paradigmatic examples are pro-
vided by cooperative and coordinated control for autonomous
multi-agent systems (see Bullo et al. (2009)) or large scale inter-
connected systems (see Zecevi¢ and §iljak (2010)). Distributed
coordinated control uses local communications between agents
to achieve global objectives that reflect the desired behavior of
the multi-agent system. Usually, a two-level hierarchical multi-
agent system is employed, which consists of upper level agent
for implementing coordinated control and lower level agents
for implementing decentralized control. In this paper, we pro-
pose to use this conceptual framework to design distributed
coordinated control of large scale interconnected system us-
ing vector Lyapunov functions (see Bellman (1962); Bailey
(1966)) and comparison principles (see Brauer (1961); Beck-
enbach and Bellman (1961)). The formulations using vector
Lyapunov functions are computationally very attractive because
of their parallel structure and scalability. However computing
these comparison equations, for a given interconnected system,
still remained a challenge. In this work we use sum-of-squares
(SOS) methods to study the stability of an interconnected sys-
tem by computing the vector Lyapunov functions as well as the
comparison equations. While this approach is applicable to any
generic dynamical system, we choose a randomly generated
network of modified! Van der Pol oscillators for illustration.

* This work was supported by the U.S. Department of Energy through the
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' We choose the Van der Pol ‘oscillator’ parameters in such a way that these
have a stable equilibrium at origin.

This network is decomposed into many interacting subsystems
and each subsystem parameters are chosen so that individually
each subsystem is stable, when the disturbances from neighbors
are zero. SOS based expanding interior algorithm (see Jarvis-
Wiloszek (2003); Anghel et al. (2013)) is used to obtain estimate
of region of attraction as sub-level sets of polynomial Lyapunov
functions for each such subsystem. Finally SOS optimization
is used to compute the stabilizing control policies, based on
linear comparison systems, such that the closed-loop network
is exponentially stable under initial disturbances.

Following some brief background in Section2 we formulate
the control design problem in Section 3. The sum-of-squares
based distributed control algorithm is proposed in Section4. In
Section 5 we illustrate the control design on a network of Van
der Pol systems, before concluding the article in Section 6.

2. PRELIMINARIES
2.1 Stability and Control of Nonlinear Systems

Let us consider the dynamical systems of the form
X()=f(x()+u, t=>0, f(0)=0, (D
where x € R" are the states, u, € R" are the control input,
f:R" — R"is locally Lipschitz and the origin is an equilibrium
point? of the ‘free’ system, i.e. the system with no control
(u; = 0). Let us first review the important concepts on stability
of the equilibrium point of the ‘free’ system.
Definition 1. The equilibrium point at the origin is called
asymptotically stable in a domain 2 CR", 0€ 2, if

Ix(O)l,€7 = lim |1x(0)]}, =0,

2 State variables can be shifted to move any equilibrium point to the origin.
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and it is exponentially stable if there exists b,c >0 such that
(Ol €2 == [lx(1)], < ce™™|x(0)]|, ¥ =0.

Lyapunov’s first or direct method (see Lyapunov (1892); Slo-
tine et al. (1991)) can give a sufficient condition of stability
through the construction a certain positive definite function.

Theorem 1. If there exists a domain Z€R", 0€ 2, and a
continuously differentiable positive definite function V: 2 — R,
called the ‘Lyapunov function’ (LF), then the equilibrium point
of the ‘free’ system at the origin is asymptotically stable if
VVTf(x) is negative definite in 2, and is exponentially stable if
VVTf(x) <—cV ¥x€ P, for some ¢ > 0.

When there exists such a V (x), the region of attraction (ROA)
of the equilibrium point at the origin can be estimated as

X:={xeD|V(x)<1}, (2a)
where, V(x) = V(x) /7", and (2b)
Y= argmax {xeR"V(x)<y}C2. (2

For systems under some control action u,, the notion of ‘stabi-
lizability’ becomes important. Specifically, we are interested in
state-feedback control of the form u; = u; (x).

Definition 2. The system (1) is called (exponentially) stabiliz-
able if there exists a control policy u; =u; (x), t > 0, such that
the origin of the closed-loop system is (exponentially) stable, in
which case u; is called a (exponentially) stabilizing control.

Courtesy to the works of Artstein (1983) and Sontag (1989), the
concept of ‘control Lyapunov functions’ has been useful in the
context of stabilizability.

Definition 3. A continuously differentiable positive definite
function V, : R* — R is called a ‘control Lyapunov function’
(CLF) if for each x € R"\ {0}, there exists a control «, such that
VVI(f(x) +u) <O.

Similar definition holds for ‘exponentially stabilizing” CLFs
(see Ames et al. (2014); Zhang et al. (2009)). CLFs can easily
accommodate ‘optimality’ in the control policies as well (see
Freeman and Kokotovic (2008)). However, as with the LFs, it
is often very difficult to find a CLF for a given system.

2.2 Sum-of-Squares and Positivstellensatz Theorem

In recent years, sum-of-squares (SOS) based optimization tech-
niques have been successfully used in constructing LFs by
restricting the search space to sum-of-squares polynomials (see
Jarvis-Wloszek (2003); Parrilo (2000); Tan (2006); Anghel
etal. (2013)). Let us denote by R [x] the ring of all polynomials
in x € R”". Then,

Definition 4. A multivariate polynomial p € R[x], x € R”, is
called a sum-of-squares (SOS) if there exists #; € Rx], i €
{1,...,s}, for some finite s, such that p(x) = ¥'i_, h?(x). Fur-
ther, the ring of all such SOS polynomials is denoted by X[x].

Checking if p € R[x] is an SOS is a semi-definite problem
which can be solved with a MATLAB® toolbox SOSTOOLS
(see Papachristodoulou et al. (2013); Papachristodoulou and
Prajna (2005)) along with a semidefinite programming solver
such as SeDuMi (see Sturm (1999)). SOS technique can be used
to search for polynomial LFs, by translating the conditions in
Theorem 1 to equivalent SOS conditions (see Jarvis-Wloszek

(2003); Wloszek et al. (2005); Prajna et al. (2005)). An impor-
tant result from algebraic geometry called Putinar’s Positivstel-
lensatz theorem > (see Putinar (1993); Lasserre (2009)) helps in
translating the SOS conditions into SOS feasibility problems.

Theorem 2. Let & ={x € R"|ki(x) >0,...,kyu(x) >0} be a
compact set, where k; € R[x], Vj € {1,...,m}. Suppose there

exists a U € {60+Z;f’:16jkj|60,6jGZ[x],Vj such that

{x € R"| u(x) > 0} is compact. Then, if p(x) >0 Vx €%, then
p€{60+2j6jkj| G(),O'jGZ[x],Vj}.

In many cases, especially for the k;Vi used throughout this
work, a U satisfying the conditions in Theorem 2 is guaranteed
to exist (see Lasserre (2009)), and need not be searched for.

2.3 Linear Comparison Principle

Before finishing this section, let us take a look at a nice result
on the ordinary differential equations which helps form the
framework of stability analysis of inter-connected systems via
vector LFs. Noting that all the elements of the vector eA‘, t>
0, where A = [a;;] € R™*™, are non-negative if and only if
ajj > 0,i # j, the authors in Beckenbach and Bellman (1961);
Bellman (1962) proposed the following result:

Lemma 1. Let A = [a;j] € R™™ have only non-negative off-
diagonal elements, i.e. a;; > 0, i # j. Then

v(t) <Av(t), t >0, veR" v(0) =y, 3)
implies v(¢) < r(t), Vt > 0, where
i) =Ar(t), t >0, r e R", r(0) = v(0) = vp. 4)

This result will henceforth be referred to as the ‘linear com-
parison principle’ and the differential equation in (4) as the
‘comparison equation’.

3. PROBLEM DESCRIPTION

The problem of interest for this work is to find state-feedback
control u, = u, (x) that exponentially stabilizes a large nonlinear
system (1). One approach could be to find a suitable CLF (Def-
inition 3), using computational methods, e.g. SOS technique.
However, as noted in Anderson and Papachristodoulou (2012),
such an approach will quickly become intractable as the system
size increases. Instead, we seek distributed stabilizing control
policies by modeling the large dynamical system as an inter-
connected network of m (> 2) interacting subsystems,

Vi=1,2,....m,

Sit xi = filx) Fupi+gi(x), x; eRY, xeR" (5a)
£i(0) =0, (5b)
gi(%)=0,V8 € {xeR"|x;=0,Vj#i}  (5c)

m
where, x = Uj:l {x;j},andn < ZZ;”J" (5d)

We assume that the isolated ‘free’ subsystem dynamics f; €
R[x;]™, and the neighbor interactions g; € R[x]" are vectors of
polynomials. Further, u; ; = u;; (x;) is a time-dependent local
state-feedback control policy, with each u,; € R[x;]" Vr. It is
assumed that the ‘free’ isolated subsystems as well as the ‘free’
full system are (locally) exponentially stable. Note that, we
allow over-lapping decomposition in which subsystems can

3 Refer to Lasserre (2009) for other versions of the Positivstellensatz theorem.
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