ARTICLE IN PRESS

[Materials Science in Semiconductor Processing](http://dx.doi.org/10.1016/j.mssp.2014.05.037) \blacksquare ($\blacksquare\blacksquare$) $\blacksquare\blacksquare\blacksquare\blacksquare$

Materials Science in Semiconductor Processing

journal homepage: <www.elsevier.com/locate/mssp>

Density functional theory study of tin and titanium dioxides: Structural and mechanical properties in the tetragonal rutile phase

I. Erdem^{*}, H.H. Kart

Department of Physics, Pamukkale University, Kınıklı Campus, 20020 Denizli, Turkey

article info

Keywords: Semiconductor Density functional theory Structural properties Elastic constants

ABSTRACT

Structural and mechanical properties in rutile (tetragonal) phases of $SnO₂$ and TiO₂ are investigated by performing first-principle density functional theory (DFT) calculations. Generalized Gradient Approximation (GGA) potentials of electronic exchange and correlation part parameterized by Perdew–Burke–Ernzerhof (PBE) are used. Second order elastic stiffness constants, bulk modulus, first-derivative of bulk modulus, and pressure behavior of these mechanical properties are studied up to pressure of 10 GPa. Structural properties and elastic constants of $SnO₂$ and $TiO₂$ calculated in this study are compatible with experimental and other available theoretical studies. Electronic band gap energies of these semiconductors are also calculated. As expected, the calculated values by standard DFT calculations are underestimated in comparison to experimental values.

 \odot 2014 Elsevier Ltd. All rights reserved.

1. Introduction

 $SnO₂$ and TiO₂ are two wide band gap semiconductor materials having numerous applications in recent technologies. Both of them have photo catalytic properties. $SnO₂$ is used to enhance performance of dye-sensitized solar cells, Li-ion batteries and selective gas sensors [\[1](#page--1-0)–[3\].](#page--1-0)

 $TiO₂$ is used for cleaning and health purposes in addition to its photovoltaic and optoelectronic applications [\[4](#page--1-0)–[8\]](#page--1-0). Haines and Leger, Shieh et al. and Huang et al. measured structural parameters of $SnO₂$ experimentally by x-ray diffraction $[9-11]$ $[9-11]$ $[9-11]$. Elastic constants of SnO₂ were determined using ultrasonic pulse superposition method by Chang and Graham [\[12\]](#page--1-0) and Brillouin and Raman spectroscopy by Hellwig et al. [\[13\].](#page--1-0) Frochlich et al. [\[14\]](#page--1-0) and Schweitzer et al. [\[15\]](#page--1-0) measured the electronic band gap energy of $SnO₂$ by employing twophoton spectroscopy. Theoretical studies are also performed

[\[16](#page--1-0)–[23\]](#page--1-0). Neutron powder diffraction and x-ray diffraction methods were used to determine the structural parameters of TiO₂ experimentally $[24–26]$ $[24–26]$. While Grimsditch and Ramdas [\[27\]u](#page--1-0)sed Brillouin scattering to obtain elastic constants of $TiO₂$ at room temperature, Isaak et al. $[28]$ applied the rectangular parallel piped (RPR) technique to measure them at the temperature range of $300-1800$ K –. Tang et al. $[29]$ measured the band gap energy of $TiO₂$ by performing polarized optical transmission measurements, Amtout and Leonelli [\[30\]](#page--1-0) hired both time-integrated photo-luminescence and resonant-Raman scattering spectra " Structural parameters, mechanical properties and electronic band gap of TiO₂ were studied theoretically as well $[31-38]$ $[31-38]$.

to investigate its mechanical, electronic and optical properties

 $SnO₂$ has seven and TiO₂ has nine known polymorphs among which the rutile structure is the most abundant and stable one at ambient conditions [\[16,31\].](#page--1-0) So the aim of this study is to investigate structural, mechanical properties and band gap of rutile phases of $SnO₂$ and TiO₂. The parts of paper are organized as follows: Computational method is explained in [Section 2.](#page-1-0) Results are compared to those of other available

<http://dx.doi.org/10.1016/j.mssp.2014.05.037> 1369-8001/& 2014 Elsevier Ltd. All rights reserved.

Please cite this article as: I. Erdem, H.H. Kart, Materials Science in Semiconductor Processing (2014), [http://dx.doi.org/](http://dx.doi.org/10.1016/j.mssp.2014.05.037) [10.1016/j.mssp.2014.05.037i](http://dx.doi.org/10.1016/j.mssp.2014.05.037)

^{*} Corresponding author. Tel.: $+90$ 2582963631; fax: $+90$ 2582963535. E-mail address: ierdem@pau.edu.tr (I. Erdem).

experimental and theoretical studies in Section 3. Conclusion is given in the last [Section 4.](#page--1-0)

2. Computational method

Calculations within density functional theory (DFT) have been performed by a projector augmented-wave method (PAW) with Blochl corrections as implemented in Vienna ab-initio Simulation Package (VASP) [\[39](#page--1-0)–[41\]](#page--1-0). Generalized Gradient Approximation (GGA) potentials which include electronic exchange and correlation part parameterized by Perdew–Burke–Ernzerhof (PBE) were employed [\[42\].](#page--1-0) The kinetic cut-off energy was 500 eV for both structures, rutile $SnO₂$ and TiO₂ in this study. For Brillouin zone integrations the k-point meshes converged at $8 \times 8 \times 10$ according to Monkhorst–Pack method [\[43\]](#page--1-0). Primitive cell of rutile structure contains 2 formula units. Convergence criteria difference between two-steps of total-energy calculations was taken as 10^{-6} eV per formula unit. Third-order Birch–Murnaghan equations of state (EoS) are used to predict the structural parameters of the semiconductors in this work [\[44\]](#page--1-0). Unit cell of each material is constructed by means of an experimental result as a starting point of simulations. Band gap calculations are performed in two steps. Charge distributions were obtained by self-consistent calculation. Then, band diagrams are evaluated by non self-consistent calculation along the paths between high symmetry points Γ, X, M, Γ, Z, R, A and Z in the Brillouin zone in reciprocal space.

3. Results

3.1. Structural and mechanical properties

The energy–volume data per unit formula calculated by DFT were fitted to one of equation of states for solids called as third-order Birch–Murnaghan EoS. Total energy of system is given as a function of volume as follows [\[44\]](#page--1-0):

$$
E(V) = E_0 + \frac{9V_0B_0}{16} \left\{ \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right]^3 B'_0 + \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right]^2 \left[6 - 4 \left(\frac{V_0}{V} \right)^{2/3} \right] \right\},\tag{1}
$$

where E_0 is the total energy, V_0 is the equilibrium volume, B_0 is the bulk modulus at the pressure of 0 GPa and B_0' is the first derivative of B_0 with respect to pressure. Structural and mechanical properties of $SnO₂$ were investigated in our previous study [\[16\]](#page--1-0). Thus, the same calculations have also been performed for rutile $TiO₂$ beside electronic

Fig. 1. Unit cell of rutile TiO₂ (P₄₂/mnm space group number 136 tetragonal).

band gap calculations in this work. The phase of rutile structure (P_{42} /mnm space group number 136, Z=2) has tetragonal symmetry in which oxygen atoms are located at 2a Wyckoff sites $\pm (u, u, 0)$, $(\frac{1}{2}+u, \frac{1}{2}-u, \frac{1}{2})$ and Sn (Ti) atoms at 4f Wyckoff sites $(0, 0, 0)$, $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ as shown in Fig. 1, where u is the unitless internal parameter which shows the fractional positions of oxygen and Sn (Ti) planes [\[45\]](#page--1-0). Our calculated structural parameters of $SnO₂$ (TiO₂) are given in Table 1 (Table 2) in comparison with experimental and other available theoretical results. It is a wellknown fact that DFT calculations using GGA type

Table 1

DFT calculation of equilibrium structural parameters of $a(\text{\AA})$, $c(\text{\AA})$, internal parameter u, bulk modulus at zero pressure B_0 (GPa) and its pressure derivative B'_0 . The rutile structure of $SnO₂$ is compared with the data of experiments [\[9](#page--1-0),[10\]](#page--1-0) and other available calculations [\[17](#page--1-0),[18\]](#page--1-0).

	Experiments	
4.826 ^b 4746 ^d 4.737 ^c $a(\AA)$ 4.776 ^a 4.830 c(A) 3.212 3.236 3.237 3.189 3.186 0.306 0.306 0.307 0.307 u B_0 (GPa) 173 192 179 205 B'_0 4.8 5.0 74 5.4		

^a From Ref. [\[17\]](#page--1-0)

^b From Ref. [\[18\]](#page--1-0)

 c From Ref. [\[9\]](#page--1-0)

^d From Ref. [\[10\]](#page--1-0)

Table 2

The calculated equilibrium parameters of rutile structured TiO₂, $a(\AA)$, c (Å), internal parameter u, bulk modulus at zero pressure B_0 (GPa) and its pressure derivative B'_0 , are compared with the data of experiments [\[25,26\]](#page--1-0) and other available calculations [\[31,33\]](#page--1-0).

	Present	Other	Calculations	Experiments	
$a(\AA)$	4.661	4.641 ^a	4.681 ^b	4.592 ^c	4.594 ^d
c(A)	2.969	2.968	3.005	2.964	2.958
u	0.3046	0.305	0.304		0.3053
B_0 (GPa)	210.2			230	
B'_{Ω}	5.8			6.6	

^b From Ref. [\[31\]](#page--1-0)

 c From Ref. [\[25\]](#page--1-0)

^d From Ref. [\[26\]](#page--1-0)

Fig. 2. Comparison of calculated c/a ratio of SnO₂ with an experimental study available up to 3.6 GPa.

Please cite this article as: I. Erdem, H.H. Kart, Materials Science in Semiconductor Processing (2014), [http://dx.doi.org/](http://dx.doi.org/10.1016/j.mssp.2014.05.037) [10.1016/j.mssp.2014.05.037i](http://dx.doi.org/10.1016/j.mssp.2014.05.037)

Download English Version:

<https://daneshyari.com/en/article/7119530>

Download Persian Version:

<https://daneshyari.com/article/7119530>

[Daneshyari.com](https://daneshyari.com)