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Abstract: The three-dimensional multiple bin packing problem (3D-MBPP) consists of packing
a set of items into a number of bins with different dimensions so as to optimize a given objective
function, e.g., minimize the number of bins used to pack the items. In this paper, we consider a
real world 3D-MBPP with several cargo constraints that arises from an automotive maker. We
propose an algorithm that first builds horizontal layers of identical items and then, according to
different selection criteria, greedily generates packing patterns by loading one layer at a time.
Computational experiments performed on benchmark instances are reported, and the results
are compared to those achieved through a well-known constructive heuristic.
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1. INTRODUCTION

Renault S.A.! is a globally operating French manufac-
turer which focuses on the production of cars and vans.
The company has presence in more than 120 countries,
and the transportation of vehicle parts and accessories
worldwide to serve its markets has become a critical activ-
ity. Recently, the EURO Special Interest Group on Cut-
ting and Packing (ESICUP)? has launched a challenge?
sponsored by Renault, that addresses a three-dimensional
multiple bin packing problem (3D-MBPP) with several
specific cargo constraints. The problem can be classified
as a multiple bin-size bin packing problem within the
typology by Wascher et al. (2007).

Basically, the multiple bin-size bin packing problem can be
summarized as follows: Consider a set of three-dimensional
rectangular items (or boxes) grouped into m types. For
each item type ¢ = 1,...,m, characterized by its length [;,
width w;, and height h;, there is a given demand d; associ-
ated with it. Consider, as well, a set of three-dimensional
rectangular bins (or containers) grouped into n types, each
one with a specific length L;, width W;, and height Hj,
j=1,...,n. The problem consists of orthogonally packing
the set of items into a number of bins (without overlap-
ping or protrusion) such that a predetermined objective
function is optimized, e.g., the total number of bins used
is minimized.

Bin packing problems are strongly NP-hard (Martello
et al., 2000) and extremely difficult to solve in practice.

Hence, heuristics are often used as alternative methods to
exact algorithms for obtaining feasible solutions within an

L http://www.renault.fr
2 http://www.fe.up.pt/esicup
3 http://challenge-esicup-2015.org

acceptable execution time, even if they cannot guarantee
to find an optimal solution.

In the literature, the few papers that treat the 3D-
MBPP under a heuristic perspective are motivated by
real cases observed in industries, such as a biscuit fac-
tory (Brunetta and Grégoire, 2005), an automobile man-
ufacturer in Turkey (Ertek and Kilic, 2006) and a logis-
tic center (Alvarez-Valdés et al., 2013). In this work, we
propose a constructive layer-building (CLB) algorithm to
tackle the Renault/ESICUP challenge. Computational ex-
periments performed on benchmark data sets are reported
and discussed here. Furthermore, as a mean to compar-
atively assess the quality of our method, we have also
implemented a well-known wall-building heuristic (George
and Robinson, 1980).

The remainder of the paper is organized as follows. In
Section 2, we introduce the Renault/ESICUP challenge
more in details. Section 3 is devoted to the description
of our constructive layer-building algorithm. In Section 4,
we evaluate the performance of our method on benchmark
problem instances. Some final remarks and comments on
future work conclude the paper with Section 5.

2. THE RENAULT/ESICUP CHALLENGE

The Renault /ESICUP challenge addresses a 3D-MBPP for
which, in addition to classical geometric constraints, many
practical cargo issues are considered. In the sequel, we
present notations, optimization criteria, and constraints
of the problem under investigation.

2.1 Items

Item types are modelled as a 5-tuple (I;,w;, hi, 7, p:),
where ;, w;, and h; are the three space dimensions (length,
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Fig. 1. Top view of two items with different orientations.

width, and height, respectively), r; is its weight, and p;
represents the material of the item type (metal, cardboard,
plastic, or wood). There is a demand d; associated with
each item type ¢. Whenever possible, items may only be
rotated in the horizontal plane. If an item cannot be
rotated, it will either be fixed lengthwise (with dimension
l; parallel to dimension L; of the bin) or widthwise (with
dimension w; parallel to dimension L; of the bin), as shown
in Fig. 1.

2.2 Rows

A row is a sequence of contiguous items. Each row may
be itself organized lengthwise or widthwise. If a row is or-
ganized lengthwise (resp. widthwise), then it is composed
of contiguous items that have their origins in the same
y-coordinate (resp. x-coordinate), as illustrated in Fig. 2.
The number of items in a row is bounded by a problem
parameter 5.

The horizontal dimensions of a row are those represented
by the rectangular envelope of its items. To prevent the
existence of holes of significant magnitude, the sizes of the
items in the dimension that is orthogonal to the row may
differ from each other in at most a given ratio §%.

2.3 Layers

A layer is composed of contiguous rows and may be
itself organized lengthwise or widthwise. The rows of a
lengthwise (resp. widthwise) layer are packed with their
origins in the same y-coordinate (resp. x-coordinate). The
number of rows allowed for each layer is delimited by a
problem parameter . All items in a layer (and, therefore,
in a row) must have the same height, except if there is no
other layer on its top.
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Fig. 2. Top view of two lengthwise rows.

Analogously, the horizontal dimensions of a layer are those
of the rectangular envelope of its rows, and the sizes of the
rows in the dimension that is orthogonal to the layer can
only differ from each other in at most a given ratio 6%.

2.4 Stacks

Contiguous layers can be packed along the height dimen-
sion to form a stack. The height of the stack is, therefore,
the sum of the heights of its layers, and it must conform
to the height of the bin. Layers in a stack have to be
packed bottom-up-wise by decreasing weight. In addition,
the layers of a same stack cannot differ, in both horizontal
dimensions, by than a given ratio §°. The same constraint
holds for the width dimensions. However, the top layer
may be largely smaller than the other layers of the stack.

Metallic items have to be packed separated from non-
metallic items in a stack. Particularly, metallic stacks are
composed of single items packed one above the others.
Conversely, non-metallic stacks require special consider-
ations. First, let us define the length (resp. the width) of
a stack as the largest length (resp. width) among all of
its layers. The ground area of a stack is the rectangular
envelope of the projections of the layers on the ground
plan. By dividing the total weight of the items of the stack
by its ground area, we obtain the density of the stack. For
non-metallic stacks, the density cannot be larger than a
problem parameter «. Finally, let the bottom layer of a
stack be its lowest layer. Items in the bottom layer must
support the weight of the stack. Again, for non-metallic
stacks, the following constraint has to be satisfied:

area(i) x weight(bottomlessstack)

<p (1)

area(bottom)

where area(bottom) is the total area of the bottom layer;
area(i) is the area of an item ¢ in the bottom layer;
weight(bottomlessstack) is the weight of the stack minus
the weight of the bottom layer; and p is an input data.

2.5 Bins

There are several possible bin types, each one of in-
finite number. Bin types are modelled as a 4-tuple
(Lj,W;,H;, R;), where L;,W; ,and H; denote, respec-
tively, the length, the width, and the height of a bin of
type j. The maximum weight that a bin of type j can
hold is R; (i.e., the sum of the weights of the items packed
into the bin must be smaller than or equal to R;). A bin
can contain several stacks that are packed orthogonally on
its floor with no overlap or protrusion.

There is a special bin (called bin 0) which stores items that
are not sent in the current batch. For a given item type 1,
with demand equals to d;, there cannot be more than
|d; x ] items in this special bin, where v is a problem
parameter in the real interval [0,1]. In the solution, the
bin 0 must be that one with the smallest volume used,
i.e., the sum of the volumes of the stacks including the
volume lost inside them.
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