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Abstract: In this paper, an Advanced Monte Carlo Method based on interval analysis approach
and Monte Carlo simulation is proposed in order to propagate uncertainties in an atmospheric
dispersion model. The purpose is to compute with accuracy the geographical region in which
the concentration of the considered toxic gas is less than the threshold of irreversible effects.
The problem of uncertainty propagation is tackled in order to assess the risk at the event
of an accident, which may have an important impact on population. The estimation of gas
concentration is based on an effect model associated with the studied dangerous phenomenon
where some model inputs are known with imprecision. The principle of the proposed method
is to generate random interval supports of model inputs instead of random values in order to
increase accuracy and reduce the sampling size. The Advanced Monte Carlo Method is applied
and compared for estimating uncertainty on the computed region with the classical Monte Carlo
simulation.

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Risk assessment, atmospheric dispersion, uncertainty propagation, interval analysis,

Monte Carlo.

1. INTRODUCTION

The assessment of technological risks is a decision aid
that aims to rank or quantify risks to human in order
to prioritize management actions and the allocation of
resources. Industrial plants or manufacturing systems may
stock, produce, transform and transport dangerous goods.
In case of an accidental event, the risk intensity has to
be evaluated, especially near heavily populated areas. The
quantitative risk evaluation is made in using an effect
model able to quantify risk intensity.

In this paper, accidental releases of hazardous gases are
considered. So risk intensity is related to the concentration
of the released toxic gas. In this way, an atmospheric
dispersion model is used to estimate this concentration
at a given geographical position. Dispersion models can be
classified in three classes as follows : Gaussian models, inte-
gral type models and 3D or computational fluid dynamics
(CFD) models. They can be used in the form of analytical
expressions or computing programs. This dispersion model
includes inputs such as source term, weather conditions,
model parameters which may be measured, estimated or
deduced with uncertainty (Oberkampf and Alvin (2002);
Pulkkinen and Huovinen (1996)). These uncertain inputs
lead to some uncertainty on the estimated gas concentra-
tion, and so on the computed dangerous area where gas
concentration should exceed regulatory thresholds.

In recent years, several approaches have been developed
in several areas in order to study and quantify the effects
of uncertainties on the manipulated data like fuzzy sets
approach(Zadeh., 1978), probabilistic approach (Robert
and Casella, 1999) and set membership approach (Moore,
1960), in other word for estimating the propagation of

uncertainties on the model output. The uncertainty propa-
gation is equivalent to calculate a confidence interval which
delimits the output variation between two lower and upper
limits deduced from uncertain inputs.

In this work an Advanced Monte Carlo Method (AMCM)
is proposed for estimating the uncertainty propagation
based on two techniques. The first one is a probabilis-
tic approach (Monte Carlo) and the second one is a set
membership approach based on interval analysis. They
aim at representing an uncertain input respectively by a
random variable following a given probability distribution
or a variable defined by a bounded support. The principle
of the proposed method is to generate random interval
supports of model inputs instead of random values in order
to increase accuracy and reduce the sampling size. The ob-
tained results of model uncertainty propagation by means
of the proposed method are compared here with the results
given by Monte Carlo simulation and interval analysis
method in order to study the variability of uncertainty
propagation for the three approaches. Then the inversion
problem of the effect model using the MCS and AMCM
approaches for taking into account model uncertainties
is treated in order to determine the geographical area
in which gas concentration is less than the threshold of
irreversible effects.

The organization of this paper is as follows. In the next
section the uncertainty propagation approaches are pre-
sented. In section 3, the Advanced Monte Carlo Method is
explained. The results of uncertainty propagation obtained
with the different approaches are reported and compared
in section 4. Then the dangerous areas computed with
MCS and AMCM are detailed in section 5. Finally, the
conclusion is presented in the last section.
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2. UNCERTAINTY PROPAGATION APPROACHES
2.1 Monte Carlo approach for uncertainty propagation

Monte Carlo Simulation (MCS) is a computational and
probabilistic method that can be used to propagate the
uncertainty coming from inputs to the model output. It is
a less complex method relative to the analytical methods,
but it requires much more computing resources (Morgan
and Henrion, 1990; Gentle, 2003; Glasserman, 2004; Ayyub
and Klir, 2006). In the following, the analytical model
of atmospheric dispersion will be written in the form
of a mathematical relation (1) describing the studied
dangerous phenomenon:

y=f(z1,..., ) (1)
Where y and x; denote respectively the gas concentration
and the ¥ scalar model input (wind speed, conditions
emission point, release flow...) influencing the model out-
put.

Monte Carlo simulation process :

(1) Define the output and the input factors of the math-
ematical model

(2) Associate a probability density for each model input
on which a MCS is performed.

(3) Generate a N-sample Xy of size p, where N is the
number of simulations and p is the number of model
inputs.

(4) Calculate the resulting model value of y for each
independent sample of size p.

(5) Perform the propagation of uncertainties on the
model output by using these N values of y.

Implementation of the Monte Carlo simulation

Figure 1 presents the calculation phase of uncertainty
propagation using MCS.
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Fig. 1. The calculation phase of uncertainty propagation.

Three main steps are executed during the implementation
of the Monte Carlo simulation : generation of N samples
of p inputs according to probability density functions,
evaluation of the model output for each sample and fi-
nally estimation of the model output and the associated
uncertainty. The final result of uncertainty propagation is
the confidence interval for the model output. Based from
the N values y1,y2, ..., YN, the uncertainty u is defined as:

axr — in 100
— YMoz — YMin : (2)

u
2 YNominalV alue

Where ynominalValue 1S the output value of the model
without uncertainty on the model inputs. The yas, and
Ymaz define respectively the minimal and maximal values
of Yk,k=1,....N-

2.2 Interval analysis approach for uncertainty propagation

Uncertainties may be also represented by intervals around
a nominal value. Interval modeling consists in describing
an uncertain input by an unknown bounded variable,
whose known support defines its feasible value set.

Interval Arithmetic

By definition, an interval is a closed and bounded set
of real numbers (Moore., 1979),(Neumaier, 1990).
If 2 denotes a bounded real variable, then the interval [z]
which it belongs is defined by:

[7] = {z €Rjz~ <z <z} (3)

The real numbers = and =T are respectively the lower and
upper limits of [x]. In general, the range [z] is denoted as
follows: [z~,z"]. The operation result on finite intervals
is defined by two bounds which are obtained by working
only on the bounds of these intervals. In this way, interval
arithmetic is an extension of real arithmetic. For a real
arithmetic operation o € {+,—,%,/}, the corresponding
interval operation on intervals [z] and [y] is defined by:

[z] o [y] = {xoylx € [x],y € [y]}. (4)
Interval arithmetic considers the whole range of possible
instances represented by an interval model. In the classic
set-theory interval analysis, given a RP to R continuous
function y = f(z1,...,xp), the interval united extension
[f] of f corresponds to the range of f-values on its interval
argument ([x1], ..., [zp]) in I(RP):
FI([1), s [5)) = (1, o )1 € 1], o € L]} =
[mzq{f(xh "'7xp)|xi € [xi]}vmax{f(xla "~7xp)|x7l € [I.Z]H
i1=1,...,p.
This notion can be extended to a vector x composed of
p bounded real variables z;,4 = 1,...,p. In this case, the
support of x becomes an interval vector also called a box
x]: [x] = [[z1],....[z,)]T. In order to introduce interval
calculus, the most elementary principle is to evaluate the
image of a box through a function f, i.e. to compute the
value set: Sy = {f(x) : Vx € [x]}. The result of the interval
evaluation of [f]([x]) leads to an overestimated interval
containing S'.

Pessimism

The interval calculation essentially suffers from a prob-
lem of pessimism, i.e it may lead to a computed interval
which represents an overestimation of the sought value set.
Indeed, the interval result after a series of mathematical
operations is not necessarily minimal, so that an interval
with a long width may be obtained. This problem is mainly
due to the dependence phenomenon (Raissi (2004)). De-
pendency between bounded variables x; ;—; ..., cannot al-
ways be taken into account when their interval supports
are manipulated. In return, the advantage is that interval
calculation is guarenteed in the sens that all situations are
taken into consideration.
For example, let [z] = [—1,1], then [z] — [z] = [-1,1] —
[-1,1] = [-2,2] # {0}, the interval operation overesti-
mates the exact domain {0}. In a general manner, pes-
simism depends on the occurrence of interval variables in
the expression of [f]. It also depends on the widths of the
manipulated intervals, indeed to work on smaller intervals
reduces the pessimism phenomenon and increases accuracy
of the uncertainty propagation.
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