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weight. We completely characterize flatness of differential weight 8 and 9. We show that a
mechanical systems with 3 degrees of freedom is flat of differential weight 8 or 9 if and only if it
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1. INTRODUCTION

In this paper, we study flatness of mechanical control
systems of the form

(MS)




ẋi=yi

ẏi=−Γjk
i (x)yjyk + dji (x)yj + ei(x) +

m∑
r=1

urgri(x)

with 1 ≤ i ≤ n and where (x, y) = (x1, . . . , xn, y1, . . . , yn)
are local coordinates on the tangent bundle TQ of the
configuration manifold Q and u = (u1, . . . , um) are inputs
of the system. The summation convention is used, except
for terms involving controls. The expression Γjk

i (x)yjyk
corresponds to Coriolis and centrifugal terms. The terms
dji (x)yj correspond to forces linear with respect to veloci-
ties, like dissipative forces, e(x) represents an uncontrolled
force and g1, . . . , gm controlled forces acting on the sys-
tem. Mechanical control systems form an important class
of control systems that has attracted a lot of attention
because of its many applications in real life. They form a
natural bridge between mechanics and control theory and
are studied, for instance, in Ortega et al. (1998); Bloch
(2003); Bullo and Lewis (2004); Ricardo and Respondek
(2010).
Two important problems in control theory and, in par-
ticular, in the study of mechanical control systems, are
trajectory tracking and constructive controllability or tra-
jectory generation. A class of systems for which these
problems are particularly easy to solve are so-called flat
systems. The notion of flatness has been introduced in
control theory in the 1990’s by Fliess, Lévine, Martin and
Rouchon in Fliess et al. (1995, 1992) (see also Isidori
et al. (1986); Jakubczyk (1993); Martin (1992); Pomet
(1995) and Fliess et al. (1999); Pomet (1997); Pereira da
Silva (2001); Martin et al. (2003); Schlacher and Schoeberl
(2007); Lévine (2009)). The fundamental property of flat
systems is that all their solutions may be parametrized
by m functions and their time-derivatives, m being the
number of controls. More precisely, the control system
Ξ : ξ̇ = F (ξ, u), ξ ∈ X ⊂ RN , u ∈ U ⊂ Rm, is flat if
we can find m functions, ϕi(ξ, u, . . . , u

(p)), for some p ≥ 0,

called flat outputs, such that
ξ = γ(ϕ, . . . , ϕ(s)) and u = δ(ϕ, . . . , ϕ(s)), (1)

for a certain integer s, where ϕ = (ϕ1, . . . , ϕm). Therefore,
all state and control variables can be determined from the
flat outputs without integration and all trajectories of the
system can be completely parametrized.
Although flatness has been intensively studied, the prob-
lem of giving necessary and sufficient verifiable condi-
tions in order to determine if a control systems is flat is
largely open. A number of special cases, however, are well
understood. For instance, it is well known that systems
linearizable via invertible static feedback are flat and their
description (1) uses the minimal possible, which is N +
m, number of time-derivatives of the components of flat
outputs ϕi, where N is the state dimension and m is the
number of controls. In fact, flat systems can be seen as a
generalization of linear systems. Namely they are lineariz-
able via dynamic, invertible and endogenous feedback, see
Fliess et al. (1995, 1992); Martin (1992); Pomet (1997). For
any flat system, that is not static feedback linearizable, the
minimal number of derivatives needed to express ξ and u
(that we will call the differential weight) is thus bigger
than N + m and measures actually the smallest possible
dimension of a precompensator linearizing dynamically the
system.
We gave a geometric characterization of flat systems of
differential weight N +3, for systems with 2 controls, and
of differential weight N +m + 1, for systems with m ≥ 3
controls in, respectively, Nicolau and Respondek (2013a)
and Nicolau and Respondek (2013b) (see also Nicolau and
Respondek (2014a,b)). Those systems form a particular
class of flat systems: they become static feedback lineariz-
able after a one-fold prolongation of a suitably chosen
control.
Many interesting examples of mechanical system are flat
and for many of them, flat outputs depend on the con-
figuration variables x only but not on their derivatives
(velocities) y. Such flat mechanical system, i.e., for which
all functions ϕi, for 1 ≤ i ≤ m, depend on the configura-
tions x only, are called config-flat, see Murray et al. (1995).
Rathinam and Murray (1998) proposed a characterization
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of config-flatness of Lagrangian systems underactuated by
one control (with n degrees of freedom and n − 1 con-
trols) in terms of the Riemannian metric corresponding
to kinetic energy which essentially determines the config-
flatness of the considered class of systems. Sato and Iwai
(2012) extended that result by giving a necessary condition
for Lagrangian control systems to be config-flat and two
types of sufficient conditions for Lagrangian control sys-
tems underactuated by 2 controls to be config-flat. Knoll
and Robenack (2014) analyzed the config-flatness of the
linear approximation of Lagrangian mechanical systems
and showed that for systems where friction is either absent
or can be compensated by the inputs, flatness implies
config-flatness. Some of the mechanical systems that we
are studying here fall into the class considered in Rathinam
and Murray (1998), but the goal of this paper is to under-
stand the geometry of mechanical control systems with 3
degrees of freedom from the point of view of differential
weight, to decide when a mechanical system of that class
is config-flat and when it is not config-flat, but vel-flat
(i.e., where the components ϕi of the flat output ϕ involve
not only the configurations x, but also the velocities y),
how the vel-flat outputs depend on the velocities and how
flatness is related to static and dynamic feedback lineariza-
tion and to the mechanical structure of the system (for
instance, we will be interested in the compatibility of the
transformations linearizing the system and the mechanical
structure).
The considered systems have 6 states and 2 controls so the
minimal possible weight is 8, which we study first. Then we
describe flatness of differential weight 9. We show that a
system (MS) with 3 degrees of freedom is flat of differen-
tial weight 8 (resp. of differential weight 9) if and only if it
is config-flat or vel-flat of differential weight 8 (resp. of dif-
ferential weight 9). We give feedback invariant conditions
describing general flatness of differential weight 8 (resp.
of differential weight 9) and then we complete them by
some geometric conditions in order to obtain a character-
ization of config-flatness. Finally, we study config-flatness
of differential weight 10. For all cases we present normal
forms and our results cover completely the config-flatness
of the considered class of systems. Indeed, we state that a
mechanical system with 3 degrees of freedom is config-flat
if and only if it is config-flat of differential weight lower
or equal to 10. Therefore two-input config-flat mechanical
system with 6 states can be static feedback linearizable
or dynamic feedback linearizable via the application of a
precompensator of dimension at most two. We show that
the dynamic precompensator corresponds to a one- or two-
fold prolongation of a suitably chosen control (which is the
simplest dynamic feedback) and moreover this control is
compatible with the mechanical structure of the system
(see Section 2.2 for the definition of feedback transforma-
tions compatible with the mechanical structure).
The paper is organized as follows. In Section 2, we provide
some preliminary notions, in particular we recall the def-
inition of flatness and that of differential weight of a flat
system and discuss the equivalence (under a diffeomor-
phism of configuration manifolds and an invertible feed-
back transformation) of two mechanical control systems.
In Section 3, we give our main results. We characterize flat
mechanical system with 3 degrees of freedom. We illustrate
our results by two examples in Section 4.

2. PRELIMINARIES
2.1 Flatness
Consider the nonlinear control system Ξ : ξ̇ = F (ξ, u),
where ξ is the state defined on a open subset X of RN

and u is the control taking values in an open subset U of
Rm (more generally, an N -dimensional manifold X and
an m-dimensional manifold U , resp.). The dynamics F
are smooth and the word smooth will always mean C∞-
smooth. Fix an integer l ≥ −1 and denote U l = U × Rml

and ūl = (u, u̇, . . . , u(l)). For l = −1, the set U−1 is empty
and ū−1 in an empty sequence.
Definition 2.1. The system Ξ : ξ̇ = F (ξ, u) is flat
at (ξ0, ū

l
0) ∈ X × U l, for l ≥ −1, if there exists a

neighborhood Ol of (ξ0, ūl
0) and m smooth functions ϕi =

ϕi(ξ, u, u̇, . . . , u
(l)), 1 ≤ i ≤ m, defined in Ol, having the

following property: there exist an integer s and smooth
functions γi, 1 ≤ i ≤ N , and δj , 1 ≤ j ≤ m, such that

ξi = γi(ϕ, ϕ̇, . . . , ϕ
(s)) and uj = δj(ϕ, ϕ̇, . . . , ϕ

(s))

along any trajectory ξ(t) given by a control u(t) that sat-
isfy (ξ(t), u(t), . . . , u(l)(t)) ∈ Ol, where ϕ = (ϕ1, . . . , ϕm)
and is called a flat output.
In the case of a flat mechanical system of the form (MS),
we have ξ = (x, y), N = 2n and if all functions ϕi,
for 1 ≤ i ≤ m, depend on the configuration variables x
only, then we will say that the system is config-flat. If the
components ϕi of the flat output ϕ involve not only the
configurations x, but also the velocities y, then the system
will be called vel-flat.
The minimal number of derivatives of components of a
flat output, needed to express ξ and u, will be called the
differential weight of that flat output and is formalized
as follows. By definition, for any flat output ϕ of a flat
system Ξ there exist integers s1, . . . , sm such that

ξ = γ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ(sm)

m )

u = δ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ(sm)

m ).
Moreover, we can choose (s1, . . . , sm) such that if for any
other m-tuple (s̃1, . . . , s̃m) we have

ξ = γ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ(s̃m)

m )

u = δ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ(s̃m)

m ),

then si ≤ s̃i, for 1 ≤ i ≤ m (see Respondek (2003)). We
will call

∑m
i=1(si+1) = m+

∑m
i=1 si the differential weight

of ϕ. A flat output of Ξ is called minimal if its differential
weight is the lowest among all flat outputs of Ξ. We define
the differential weight of a flat system to be equal to the
differential weight of any of its minimal flat outputs.

2.2 Mechanical feedback equivalence

Let (MS) and (M̃S) be two mechanical control systems.
We say that they are mechanical feedback equivalent (MF-
equivalent) (resp., locally MF-equivalent at points (x0, y0)
and (x̃0, ỹ0)) if they are static feedback equivalent (resp.,
locally static feedback-equivalent around points (x0, y0)
and (x̃0, ỹ0)) under an extended point transformation
Φ = (φ1, φ2) of the form x̃ = φ1(x) and ỹ = φ2(x, y) =
Dφ1(x)y, and an invertible static feedback transformation
ũ = α̃(x, y) + β̃(x)u, with β̃ an invertible matrix and
α̃ quadratic with respect to y, where (x, y) and (x̃, ỹ)
(resp., u and ũ) are local coordinates (resp. controls) of
(MS) and (M̃S). We will say that the system (MS)
is MF-transformed into (M̃S). Notice that in order to
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