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Abstract: The use of beams and similar structural elements is finding increasing application in
many areas, including micro and nanotechnology devices. For the purpose of buckling analysis
and control, it is essential to account for nonlinear terms in the strains while modeling these
flexible structures. Further, in modeling of micro and nanotechnology devices, the micro length
scale parameter effects can be accounted by the use of a 2 dimensional stress-strain relationship.
This paper studies the buckling effect for a slender, vertical beam with a tip-mass at one end
and fixed on a movable platform at the other. For the purpose of illustration, the movable
platform is assumed to be a cart. Accounting for a 2 dimensional stress-strain relationship,
nonlinear expressions for strains, and incorporating an inextensibility constraint of the beam,
the Hamiltonian equations of motion are obtained. The equations of motion are then cast
in a port-Hamiltonian form with appropriately defined flows and efforts. We then carry out a
preliminary modal analysis of the system to describe candidate post-buckling configurations and
study the stability properties of these equilibria. The vertical configuration of the beam under
the action of gravity is without loss of generality, since the objective is to model a potential
field that determines the equilibria.
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1. INTRODUCTION

This paper presents port-Hamiltonian (PH) modelling to
study the buckling effect for a slender, vertical Euler-
Bernoulli (EB) beam with a tip-mass at one end and fixed
on a movable platform (the actuator) at the other. For the
purpose of illustration, the movable platform is assumed
to be a cart.

The problem of buckling analysis and control of EB beam
subjected to an axial load, has been dealt widely in the
literature ( see Meressi & Paden (1993), Thompson &
Loughlan (1995), Wang (2010)). However, the EB beam
model used there are small deflection models based on
the assumption of small strains and rotation, and utilize
the linear expressions of strains. To describe the large
deflections in a beam (as expected in case of buckling),
the nonlinear terms in the strain need to be considered.
In Vo et al. (2008) the EB beam model has been de-
rived using a nonlinear expression for the axial strain.
However, the model thus obtained is an one dimensional
model. The beam model based on modified couple stress

* The support of DAAD / Department of Science of Technology
(India) for travel and stay expenses is gratefully acknowledged
(project 57085640, “A geometric approach to the modelling, dis-
cretization and control of mechanical systems”, DST Sanction Letter:
INT/FRG/DAAD/P-239/2014 ).

theory that accounts for the nonlinear terms in the normal
and shear strain, too seems to be more accurate (see Ma
et al. (2008)), as it describes the beam bending problem
in two dimensions rather than just restricting it to one
dimension as done in conventional EB models. In modeling
of micro and nanotechnology devices, the micro length
scale parameter effects can be accounted by the use of a
2 dimensional stress-strain relationship. In the generalized
beam theory described in Reddy & Mahaffey (2013), it is
shown that by including the nonlinear terms in normal and
shear strain, the micro length scale parameter effect can be
accounted for in the beam model. This effect is significant
in micro/nano beams. Further, for buckling analysis, it
is essential to account for the inextensibility constraint
of the beam (see Patil & Gandhi (2014)). The model
derived in our paper, incorporates a 2 dimensional stress-
strain relationship, non-linear expressions for the strains
and the inextensibility constraint of the beam. The non-
linear model thus obtained describes the large deflection
of micro/nano beams and serves as an appropriate model
for describing the buckling phenomena.

From the point of view of control, it is convenient to repre-
sent these mathematical models in a PH framework since
there are well-established energy based control synthesis
techniques for such models. There are several references
discussing the control of flexible beams employing their PH
model. The problem of stabilizing the displacement of an
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Fig. 1. Flexible beam with a tip-mass on a cart

EB beam using a boundary control approach is discussed
in Osita et al. (2001). The approach of control by damping
injection (both boundary control and distributed control)
and control by interconnection and energy shaping of the
linear Timoshenko beam can be found in Macchelli &
Melchiorri (2004a) and Macchelli & Melchiorri (2004b).
In Banavar & Dey (2010), a stabilizing controller has
been obtained for a flexible beam fixed to a moving cart.
However, the beam models discussed in these references
are linear ones that describe small deflection or vibration
control problems. Although, in Nishida & Yamakita (2005)
the PH representation of flexible beams under large defor-
mation has been obtained, the model does not account for
the axial load, actuation nor the inextensibility constraint.
Our work addresses the challenge of obtaining the PH rep-
resentation of nonlinear beam model also accounting for
the inextensibility constraint. The vertical configuration
of the beam under the action of gravity is without loss of
generality, since the objective is to model a potential field
that determines the equilibria.

The paper is organized as follows: The system description
and the nomenclature used in the paper is presented in
Section II . In section III, the equations of motion are
derived using the extended Hamilton’s principle followed
by the PH model of the cart, beam and the tip-mass in
Section IV. A preliminary modal analysis of the system to
describe candidate post-buckling configurations and study
of the stability properties of these equilibria is discussed in
Section V. Finally in Section VI, the conclusion are drawn
and the future objective have been set.

2. SYSTEM DESCRIPTION

A schematic of the system of our interest is shown in Fig.
1. It comprises of the following subsystems: a moving cart,
a flexible beam that is fixed at the bottom to the cart and
has a rigid tip-mass attached to the upper free end.

The nomenclature used in the paper is as follows: the beam
has a length L, width a and thickness b. The beam is
symmetric with respect to the body frame (zp,ys,25)
as shown in Fig. 2. Let y € [0, L] be the position of any
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Fig. 2. (a) Undeflected profile and (b) cross section of the

beam
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Fig. 3. (a) Undeflected profile of the beam (b) Beam under
tranverse deflection

point O on the mid-plane, from the base of the beam.
Let the horizontal deflection of the beam from its upright
profile, the axial deflection due to the loading effect of
the tip-mass, and the rotation of the cross-section of the
beam due to bending at O be v(y,t), u(y,t), and 6(y,t)
respectively (refer to Fig. 3). The tip-mass is attached to
the flexible beam with the center at y = L. It has a radius
r and mass m. The mass translates in the transverse and
vertical direction. Let v,,(t) = v(L,t), um(t) = u(L,t)
and 6,,(t) = 6(L,t) represent the horizontal displacement,
vertical displacement and rotation of the tip-mass from the
vertical axis, respectively. The acceleration due to gravity
is denoted by g. The cart has a mass M, displacement
x.(t) with respect to the fixed frame of reference as shown
in Fig. 5 and F(t) is the actuation force applied to the
cart.

3. EQUATIONS OF MOTION

In this section, we derive the generalized equations of mo-
tion for an EB beam using the simplified Green-Lagrange
strain tensor. The derivation accounts for the micro length
scale effects. The EB beam theory assumes that,
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