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Abstract: The paper deals with the robust energy-based stabilization of a wheeled inverted
pendulum, which is an underactuated, unstable mechanical system subject to nonholonomic
constraints. The equilibrium to be stabilized is characterized by the length of the driven path,
the orientation, and the pitch angle. We use the method of Controlled Lagrangians which is
applied in a systematic way, and is very intuitive, for it is physically motivated. After a detailed
presentation of the model under nonholonomic constraints, we provide an elegant solution of
the matching equations for kinetic and potential energy shaping for the considered systems.
Simulations show the applicability and robustness of the method.
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1. INTRODUCTION

The wheeled inverted pendulum (WIP) — and its commer-
cial version, the Segway [2015, Jan] — has gained inter-
est for human assistance and transportation in the past
several years due to its high maneuverability and simple
construction (see, e.g., Li et al. [2013]). A WIP — shown
from the side in Figure 1 (left) — consists of a vertical body
with two coaxial driven wheels mounted on the body. The
actuation of both wheels in the same direction generates
a forward (or backward) motion; opposite wheel velocities
lead to a turning motion around the vertical axis. Mobile
robotic systems based on the WIP like the intelligent two
wheeled road vehicle B2 presented by Baloh and Parent
[2003], or novel and more car-like systems like the Segway
Puma [2015, Jan] are being developed to be used as new
personal urban transportation systems. Some institutes
have also developed their own WIPs for research purposes,
e.g., Yamabico Kurara, introduced by Ha and Yuta [1996],
or JOE, presented by Grasser et al. [2002], to give only
some examples. These systems can be further used as
service robots like KOBOKER (see Lee and Jung [2011]).

The stabilization and tracking control for the WIP is
challenging: The system belongs to the class of underac-
tuated mechanical systems, since the number of control
inputs is less than the number of degrees of freedom.
Furthermore, the upward position of the body represents
an unstable equilibrium which needs to be stabilized by
feedback. In addition, the system motion is restricted by
nonholonomic (nonintegrable) constraints (Bloch [2003]).
These constraints do not restrict the configuration space
Q on which the dynamics evolve, but the motion direction
at a given point: Because of the rolling-without-slipping
constraint it is not possible to move sideways, and the
forward velocity of the WIP and its yaw rate are directly
given by the angular velocity of the wheels. The goal of
this paper is to present the design of a robust nonlinear

position controller using energy shaping techniques for
wheeled inverted pendulum systems.

1.1 FExisting work

Several control laws have been applied to the WIP, mostly
using linearized models (see Li et al. [2013], Ha and Yuta
[1996], Grasser et al. [2002]). During the last decade, how-
ever, researchers have put a strong focus on the nonlinear
model for control purposes: Some accessibility and con-
trollability analysis of the WIP has been done by Pathak
et al. [2005] and Nasrallah et al. [2007]. Based on the
analysis of the nonlinear system, nonlinear control strate-
gies have been developed for Segway-like systems. Pathak
et al. [2005] present, e. g., two different two-level controllers
based on the partially feedback linearized model for posi-
tion and velocity control while maintaining stable pitch
dynamics; Nasrallah et al. [2007] design in several steps
a posture and velocity control for the WIP moving on an
inclined plane. Many other types of modeling and control
approaches have also been implemented and tested: For a
very complete overview of the existing work on modeling
and control of WIPs until 2012 the reader is referred to
Chan et al. [2013].

Energy shaping techniques, like the method of Controlled
Lagrangians, or Interconnection and Damping Assignment
Passivity-Based Control (IDA-PBC), have been success-
fully used for the stabilization of underactuated mecha-
nical systems in the past, see, e.g., Ortega et al. [2002],
Chang et al. [2002]. These methods are attractive since
they shape the energy of the system but preserve its
physical structure, and thus, appear natural. The idea of
shaping the energy can also be expanded to mechanical
systems subject to nonholonomic constraints: Maschke and
Van der Schaft [1994] stabilize nonholonomic systems by
shaping the potential energy. Muralidharan et al. [2009]
stabilize the pitch dynamics of the WIP through IDA-
PBC.
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Nonholonomic systems violate one of the necessary condi-
tions for asymptotic stabilization by smooth state feedback
formulated by Brockett [1983]. Thus, for the asymptotic
stabilization of a desired configuration g€ Q, a discontinu-
ous or time-varying control law is required (Astolfi [1996]).
In this paper, to avoid this issue, instead of working in the
WIPs six-dimensional configuration space Q, we restrict
our analysis to the three dimensional space Q with local
coordinates consisting of the path length, the pitch, and
the yawing angle: £ = [s a 0] € Q. The pitch angle is phys-
ically restricted to —7/2 < a < 7/2. We design a passivity-
based controller for the stabilization of an equilibrium
&* € Q. The controller is thereafter parametrized apply-
ing local linear dynamics assignment (LLDA), a method
used to fix design parameters in nonlinear passivity based
control by making use of the linearized model (Kotyczka
[2013]). Using this approach, prescribed local dynamics (in
terms of the closed-loop eigenvalues) can be achieved.

The passivity-based controller presented in this note can
be systematically computed and leads to an asymptotically
stable equilibrium £* € @ with a large domain of attrac-
tion. Since the closed-loop mechanical energy is used as
Lyapunov function, the framework is remarkably intuitive
for it is physically motivated. Moreover, LLDA allows
for transparency concerning parameter tuning. The ap-
plicability, performance, and robustness of the developed
controller is shown with a series of simulations.

Notation: For compactness of notation, the operator
V. f(x) is used to denote the transposed Jacobian of a
vector-valued function f(z). Additionally, we will use the
notation s(a) = sina, and c¢(a) = cosa. When obvious
from the context, arguments are omitted for simplicity.

2. MODELING

In a mechanical system with nonholonomic constraints,
the n-dimensional manifold @ is the configuration space,
its tangent bundle T'Q is the velocity phase space and a
smooth (nonintegrable) distribution D C T'Q represents
the constraints. The Lagrangian L is amap L : TQ — R
and is defined as the kinetic energy minus the potential
energy L = T — V. A curve ¢(t) is said to satisfy the
constraints if ¢(t) € Dy, for all ¢ € Q and all times t.
For k nonholonomic constraints, the admissible velocities
in a point ¢ are thus restricted to a (n-k)-dimensional
subset (D, = R" %) of the tangent space T,Q. The
constraint distribution D is assumed to be regular, i.e.,
of constant rank. The widely used Lagrange-d’Alembert
equations (see, e.g., Bloch [2003])

d

%(VQL)_VQL:A(Q)A—FZFMH (1)
describe the dynamics of systems subject to & nonholo-
nomic (Pfaffian) constraints of the form

A (q)q=0. (2)
Assuming there are no external forces other than the input
torques 7, (1) results in

M(q)i+C(q, )i+ VqV(g) =7+ Alg)A,  (3)

where M = M7 is the positive definite mass matrix, and
the term C'¢ represents the Coriolis and centripetal forces.

The constraints have been adjoined to the system using
Lagrange multipliers A€ R that represent the magnitude
of the constraint forces which oblige the system to satisfy
the constraints. The work done by these forces vanishes as
can be seen by looking at the corresponding power
Peonstr = ¢ AN =ATAT§=0. (4)
The approach, as explained in the following, is also used,
e.g., by Pathak et al. [2005] for the modeling of the WIP:
Due to the nonholonomic constraints (2), the admissible

velocities at ¢ € O must be of the form

q= S(Q)Vv (5)
with a smooth full rank matrix S satisfying ATS = 0 for
all ge Q, and local coordinates of the constrained tangent
space v € D,;. The admissible velocities at ¢ lie in the
subspace of TqQ spanned by the columns of S, which is
nothing but the (n—k)-dimensional space D,. Now, replace
G = Svand § = Sv+ Svin (3), and eliminate the
constraints by pre-multiplying it by ST

STNSi + ST (MS’ + és) v+ 8TV, V = ST7  (6)

The dynamical system represented by (6) can also be
written in the form

Mi+Cv+ 8TV, V =4+ Jv, (7)
vyhere M = STMS, and # = ST7. Since the Ipatrix
C is solely defined by the Christoffel symbols of M, the
matching of the systems (6) and (7) requires, in general,
additional gyroscopic forces Jv, where J = -J7, which
are mistakently missing in Muralidharan et al. [2009] for

imposing the constraints before taking variations in the
derivation of the equations of motion (see Bloch [2003]).

2.1 The wheeled inverted pendulum (WIP)

Different modeling approaches for WIPs can be found,
e.g., in Pathak et al. [2005], Delgado et al. [2015], Nas-
rallah et al. [2007]. The dynamic parameters needed for
the modeling of the WIP are listed below in Table 1
with the values used for the simulations. Figure 1 shows

mp body mass 1kg
mw wheel mass 0.5kg
r wheel radius 0.05m
b distance from the wheel axis to
the body’s center of mass 0.08 m
d half of the wheel distance 0.05m
Ip body’s moment of inertia
Ip,, around z-axis 1E-5 kg m?
Ip,, around y-axis 9B-4 kg m?
Ip,, around z-axis 4B-4 kg m?
Iw wheel’s moment of inertia
Iw,, around y-axis 1E-8 kg m?
Iyw,, around z-axis 1E-6 kg m?
g gravity constant 10 m/s2

Table 1. System parameters

a simple scheme of the wheeled inverted pendulum. Let
Q =R2 xS xS xS! x S! be the configuration space and
define local coordinates ¢ = (z, y, 0, «, @i, @) € Q. The
coordinates ¢; and ¢, represent the absolute rotation of
the left and right wheel, respectively. The equations
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