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A B S T R A C T

Ultra-high precision measuring machines enable to measure aspheric shapes with an uncertainty of few tens of
nanometres. The resulting clouds of points are then associated to theoretical model at the same level of accuracy
so as to obtain parameters that indicate about form error. Minimum zone (MZ), defined as the least value of peak
to valley (PV), is widely used to assess form error. Least squares method (L2) is often used to determine MZ but
the resulting value is usually overestimated. For this reason, L2 is replaced by L∞ norm because it gives a more
accurate value of MZ since it directly minimizes PV. Using L∞ norm results in a non-smooth optimization
problem and consequently its resolution becomes more challenging compared to L2.

In this paper, a novel minimax fitting method for accurate metrology of aspheres and freeform based on a
hybrid trust region algorithm (HTR) is proposed. To assess performance of the introduced method, it was
compared to an available minimax fitting algorithm based on a smoothing technique: exponential penalty
function (EPF). The choice of EPF is justified by superior performances in comparison to existing techniques.
Comparison was conducted on reference data, data available in literature and data gathered form measurements
of a real optical high quality asphere. Results show superiority of HTR over EPF in both returned PV values and
execution time.

1. Introduction

Aspheres and freeform optics have replaced spherical components
in several optical systems due to their superiority over classical (sphe-
rical) elements especially for eliminating spherical aberrations [1]. The
emergence of new manufacturing techniques such as glass and plastic
moulding and grinding as well as polishing methods expands its fields
of application in medical imaging, lasers, astronomy, etc. [2].

Form quality of optical aspheres and freeforms is crucial to their
performance and functionality. For this reason, form deviations must be
tracked all over components’ lifetime from design to operational use.
Nowadays, available techniques allow manufacturing complex geome-
tries and provide sub-micrometre-level corrections. On the other hand,
form assessment of optical elements and data processing still a major
issue [3]. Form assessment consists of determining whether form errors
are within tolerance specifications. For complex shapes, aspherics for
instance, data gathered from ultra-high precision CMMs must be treated
in a way to give parameters that indicate about tolerance zone. One of
these parameters is usually taken as the peak to valley (PV). Therefore,
the least value of PV which corresponds to the minimum zone (MZ)

must be determined (Fig. 1).
To determine the PV, deviations of data points from a reference

surface must be determined a priori. There exist several ways to de-
termine the reference surface but the one fitted according to a least
squares (L2) criterion is the widely used [3,4]. The main reason for
using L2 lies in simplicity when solving the resulting minimization
problem compared to other criteria. Nevertheless, L2 usually over-
estimates MZ which causes the rejection of a number of conforming
parts. In another way, L∞ criterion results in a direct minimization of
PV and consequently returns the closest value of MZ to actual.

In this context, a European project 15SIB01-FreeFORM was laun-
ched in 2016 to develop reference L∞ fitting algorithms and traceable
metrology for aspheres and freeform optical lenses with below 30 nm
accuracy [5].

In general, minimum zone determination problem could be math-
ematically formulated as follows:

x x x x T sϕ ϕ fmin ( ) where ( ) max ( ) and { , }x i m i1= =⩽ ⩽ (1)

fi is the Euclidean distance between the measured point P( )i and its
corresponding projection into the surface Q( )i , x Rn∈ could be either
the set of intrinsic shape parameters s, or the motion parameters T :
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rotation and translation applied to P{ }i .
Even that L∞ criterion gives a smaller value of PV, the formulated

objective function is non-differentiable and the resulting problem is
very difficult to solve since a wide range of derivative-based techniques
could not be used.

The choice of a mathematical formulation to describe the aspheric is
also crucial because it affects the obtained MZ. Although there exist
several formulations to describe an aspheric lens: splines, Chebyshev
polynomials, Zernike polynomials, etc. [6]. The one given by ISO
10110-Part 12:2007 [7] called monomial formulation is the most used.
Its mathematical expression is presented in (2).
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Where:

z → sag of surface
r → radial distance
R → radius of curvature
κ → conic constant
a m2 4+ →monomial coefficients

The aperture size of the lens Rmax defines the domain of r :
r R0 max⩽ ⩽ for which Eq. (2) is valid. The number of monomial terms

M depends on the targeted accuracy. Despite its simplicity, this for-
mulation represents some serious drawbacks especially those due to its
numerical instability. Thus, when performing L2 fitting, the resulting
Gram matrix is usually ill-conditioned, which outcomes in less accuracy
because of significant loss of digits. Other formulations were proposed
to cope with these drawbacks. They consist of using orthogonal poly-
nomials instead of monomials [8]. As consequence, the obtained Gram
matrix is nearly diagonal and the resulting system is more stable.

This paper is structured as follows. In Section 2, an overview of
minimum zone fitting methods is presented. In Section 3, the im-
plementation of the hybrid trust region (HTR) algorithm is detailed.
Validation of HTR against EPF is carried out on generated reference
data as well as benchmark data in Section 4. In the last section, an
investigation of a real case study of a measured high quality optical
asphere is illustrated.

2. Literature review

Minimum zone determination for classical geometries such as lines,
planes, circles and spheres has been extensively studied and different
methods were developed [9]. Computational geometry techniques were
used in [10–15] to determine minimum zone for straightness, flatness,
circularity, cylindiricity and sphericity tolerance. This class of methods
represent a major advantage since no derivative calculations are re-
quired. Furthermore, they can find the exact solution but their use is
restricted to simple geometries and could not be extended to freeforms.
Another free derivative method based on downhill simplex algorithm
was proposed to determine straightness tolerance [16,17]. Genetic al-
gorithms were also used for form error determination [18–20].

In regards to freeform shapes, many methods were developed for
minimum zone assessment. A first approach makes use of Lp norm [21].

At each iteration the value of p is incremented and the corresponding Lp
based smooth objective function is minimized using classical methods
until a termination criterion is satisfied. This method suffers from ser-
ious instability especially when approaching the optimal solution be-
cause the resulting Lp based objective function becomes nearly non-
differentiable. A heuristic method based on differential evolution al-
gorithm (DE) was recently developed for freeforms [22]. This method
performs poorly especially with large clouds of data points. Moreover,
given results are not deterministic.

In order to make use of differentiation optimization techniques, the
aggregation function method could be used. In [23,24], an exponential
penalty function (EPF) is used to approximate the non-smooth objective
function via a twice differentiable one. The resulting function could be
minimized using Newton based method or any derivative-based opti-
mization technique. This method gives good results but represents some
instabilities due to exponential terms.

The minimum zone determination problem could be formulated as a
nonlinear constrained problem. The formulation were detailed in [25],
and a primal-dual interior point algorithm (PDIP) was implemented to
solve the resulting problem. This method represents lower perfor-
mances compared to EPF since minimization of the resulting La-
grangian function requires the resolution of large linear systems with
ill-conditioned matrices.

3. Hybrid trust region algorithm (HTR)

The main idea of the hybrid trust region algorithm consists of per-
forming either trust region step, line search step or curve search step
according to the specific situation faced at each iteration [26,27]. It
enables to avoid solving the trust region problem many times. For every
iteration, a first stage consists of obtaining a trust region trial step dk by
solving the quadratic problem given in (3).
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where Bk is n by n symmetric positive definite matrix, Δk is the para-
meter defining the trust region domain, z is an introduced parameter
depending on the first derivative of the objective function ϕ, fi∇ is the
gradient of the function fi and . ,.′′ < > ′′ denotes the dot product.

The trust region domain is defined using L∞ instead of L2 so as QP
becomes an easily-solved quadratic problem. It should be mentioned
that the proposed QP in (3) has always a solution since (0,0) lies inside
the feasible domain. This problem could be solved using classical
methods adapted to quadratic problems such as interior point method
[28].

If the resulting trust region trial step dk could not be accepted, a
corrected step d dk k+ ∼ is determined by solving the problem in (4).
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If neither the initial trust region step dk nor the corrected step
d dk k+ ∼ could be acceptable in trust region scheme, a line search along
dk or a curve search is performed if dk is a descent direction (the actual
reduction r 0k > in (6)). Otherwise (r 0k ⩽ ), a curve search is used to
find a step length tk that verifies (5).

Bϕ x t d t d ϕ x αt d d( ) ( ) , kk k k k k k k k k
2+ + ⩽ − 〈 〉∼

(5)

where α (0,1/2)∈ , dk is the solution of (3) and dk
∼

is the solution of (4).
In the case d d‖ ‖ ‖ ‖k k⩽ ∼

, dk
∼

should be taken to be 0. The implemented
algorithm follows the next steps:
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Fig. 1. Tolerance zone definition.
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