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Abstract: In this discussion paper we present two different parametrizations of the differential
operator and their associated closure relations describing a model of an isothermal tubular
reactor. From these two parametrizations we derive the boundary port variables of the system
and check the existence of solutions in the case of Dankwert boundary conditions. We show that
existence of solution can be derived from both the coercivity condition on the closure relations
and some inequality condition on the input matrix mapping. Even if in the case of constant
parameters these two approaches are equivalent, the canonical factorization is the only one that
can be applied when some of the parameters depends on the spatial variable. This property is
of major interest when linearized non isothermal tubular reactors are considered.
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1. INTRODUCTION

The aim of this paper is to discuss the impact of the
parametrization of 1D linear differential operators on the
analysis of solutions of the associated PDE systems. The
discussion is elaborated on an isothermal tubular reactor
system but aims to be used for the linearized model of
non isothermal tubular reactors where occur convection,
dispersion and reaction phenomena. In this paper the
considered reaction is of type A — B and the system
is modeled by the mass balance equation of element A
given as second order linear partial differential equation.
Existence of solutions for this system in case of constant
parameters has been studied in (Le Gorrec et al., 2006)
where the authors give the condition to satisfy in order to
ensure the existence of a Cjy semigroup. They also propose
a parametrization of all the input defining a boundary
control system (Le Gorrec et al., 2005). This result is
based on the extension of flow and effort variables and
the definition of an extended skew-symmetric operator and
some coercive closure relations. The existence of solution
is then derived from both input matrix condition and
coercivity of the closure operator. The previous extension
of the operator is not unique and may lead to different
input mapping and closure relations.

In this paper, we propose two different parametrizations
of the differential operator/closure relation describing the
simple isothermal tubular reactor model. In both cases
we derive the associated boundary port variables. The
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Dankwert boundary conditions (Bird , 2002) are then
expressed as a linear combination of these boundary port
variables and we check the conditions that insure the
existence of a Cy semigroup. We show that existence of
solution can be equivalently derived in one case from the
coercivity condition of the closure operator and in the
other case from the inequality condition on the input
matrix mapping. Even if the two initial parametrizations
are always possible, the first one can still be applied when
the dissipation and the convection depend on the spacial
variable while it is not the case with the second one. It will
be of particular interest when linearized non linear tubular
reactors are considered.

The paper is organized as follows: in section 2 we recall
how the differential operator can be parametrized and
how from this parametrization one can define a boundary
control system. In section 3, we present the model of the
tubular reactor with two possible parametrization. For
each of them we define the parametrization of the bound-
ary port variables associated with Dankwert conditions.
Then we discuss the conditions that has to be checked
in order to define a boundary control system. We end in
section 4 by conclusion and perspectives.

2. BOUNDARY CONTROL SYSTEM

We consider the class of dissipative boundary control
systems:

%(t,z) = (J — GSG*)Lx(t, z) (1)

ot
u(t) = Bx(t, 2),
y(t) = Cx(t, 2), z(0,2) = z(2)
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where x € La((a,b),R™) is the state variable. S and L are
positive definite and coercive operators on La((a,b), R™).
Note that S and £ may depend on the spatial variable z.
The skew-symmetric differential operator J is written as:

B N d'x
Je=2 P @

with P; a real constant matrix in R("*™) satisfying P; =
(71)1+1PZ-T. The differential operator G and its dual G* are
defined by :

N

N . .
dz i 70T
gI:ZGi@’g I:Z(*l) GlT@zi (3)

7

with G; a real constant matrix in R(>™)_ The operators
B and C are, respectively, the boundary input and output
operators. The system (1) can be rewritten using an ex-
tended skew-symmetric operator given hereafter in terms
of conjugate port variables, efforts e and flows f, as follows:

(D)-(Z28)(5) a=st @
N

Te

with f = %(t,z)7 e = Lx(t,z) and (f,e,) the conju-
gate port variables associated with the dissipation. The
operator 7, makes explicit the interconnection structure
associated with the power continuous energy flows in the
system (Duindam et al. (2002)).

Proposition 1. (Le Gorrec et al. (2005)) The operator 7,
defined in (4) with (2), and (3) is formally skew-symmetric
and can be written as:

P;

7 (2)=Slevter §]5(2) ©

=0

~ X ~T .
with P, = (—=1)""1P; . Note that Py can have a rank
deficiency.

In the following, we define the matrices @, @1 and Ry
that will be used to define the boundary port variables
associated with the extended operator J. (see (Le Gorrec
et al., 2005; Jacob et al., 2012; Le Gorrec et al., 2006) for
more details):

P Py Py -+ Py_i Py

~ P —P; —P,--- Py O
o= oo

(~D)N"'Py 0 e - 0

M spanning the column of @, @1 = MT@M and M§ =
(MTM)=tMT

()58 o

where I € R((mtm)Nx(ntm)N ig the identity matrix.

Definition 1. The boundary port variables associated with
the differential operator J. are the vectors ec g, fe,o €
R2"N | defined by

ec(b)

dN_l:ee
(o) =R | 45 v 0

€e,d ec(a)

dN—l.

€e
W(a)

where €' = (e, —SG*e) is the extended vector of effort

variables. The following theorem gives the matrix condi-
tion that has to be satisfied to ensure existence of solutions
and to define a Boundary Control System.

Theorem 2. ((Le Gorrec et al., 2006))Let W be a (n +
m)N x 2(n+m)N matrix. If W has full rank and satisfies
the following inequality:

wEw?T >0 (9)
where ¥ is defined in (7), then the system

Or (t,2) = (T — GSG*)La(t, z)

5 (10)
u(t) =W (fe’f?)

with input

(11)

€e,0

is a boundary control system and the operator A = (J —
GSG*)L with domain

D(A) = {e € HY((a,b);R™) | SG*e € HY((a,b); R"),

<§£g> € kerW} . (12)

generates a contraction semigroup.

Remark 1. To summarize if A and G are canonical, the
existence of solution is related to the satisfaction of the
two following conditions:

(1) S is coercice
(2) wxw?T >0

3. BOUNDARY CONTROL SYSTEM ASSOCIATED
WITH THE TUBULAR REACTOR

We consider now a 1D linear tubular reactor of length L,
in which occur convection, (axial) dispersion and reaction
phenomena. The mass balance equation on species A leads
to the following PDE:

0 0? 0
%:Dazp;—v%—km‘ ,z €10, L] (13)
where pa(z,t) is the mass concentration of element A,
D > 0 is the dispersion coefficient, v > 0 is the velocity
and k£ > 0 the reaction kinetics. Hereafter is proposed two
possible ways of writting the model (13) in the general
form given in (4). A first one is non canonical since
the corresponding differential operator G depends on the
parameters of the system and the second one is obtained
by a canonical operator G.

8.1 Case A : Non-canonical formulation

In this case the form (4) of system (13) is obtained using
the following parametrization:
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