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Abstract: In high-speed locomotion, control is best shared between “brain” and “body”: if the
natural body dynamics already exhibit desired behaviour, control action can be restricted to
stabilising this behaviour, or providing energy to keep it going. This morphological computation
can be modelled and designed using Port-Hamiltonian systems (PHS) theory, since the basis
of both is the interconnection of dynamic elements. In this paper, we explore the application
of PHS to morphological computation, showing that a three degrees-of-freedom elastic spring
functioning as spine in a quadrupedal robot can lead to forward locomotion—without any

complicated control action whatsoever.
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1. INTRODUCTION

Usually, control in robotics focuses on measuring the
system state and providing a feedback through actuators;
stabilising at a position, following a desired trajectory
or realising a controlled impedance. For some years now
however, a new field of embodied artificial intelligence or
morphological computation has begun to develop, wherein
it is recognised that the morphology of the robot itself
has a large influence on the behaviour; and that control of
the robot could—or rather, should—be shared between
“traditional” control and the morphology of the robot
(Pfeifer et al. (2007)). Good examples of research into
this intelligence embodiment include the robots “Puppy”
of Tida et al. (2005) and “Scout” of Poulakakis (2006), both
bounding quadrupeds with active hip joints and passive
sping-like legs; the “Salamander”, a undulatory walking
and swimming robot in Ijspeert et al. (2007); and the
kangaroo-like resonance-based robots of Maheshwari et al.
(2012).

The aim in our project is to design a quadruped robot,
a “cheetah”, exhibiting very fast locomotion with a low
energy cost. We believe that in order to achieve this,
the desired behaviour (bounding or galloping) has to be
at least partly present in the natural dynamics of the
system. An energy-based modelling approach is a natural
choice when studying energy-efficient locomotion. Port-
Hamiltonian Systems (PHS) theory should be very suited
for studying morphological computation, considering the
similarity between them: exploiting natural body dynamics
means obtaining desired behaviour by choosing a proper
morphology, in other words the interconnection of e.g.
masses and springs; PHS theory explicitly expresses, in

an energy-consistent way, the interconnection of various
energy storage elements, such as masses and springs,
mathematically represented by a Dirac structure (Cervera
et al. (2007); Schaft and Jeltsema (2014)).

In this paper, we investigate the effect of an elastic spine
on quadrupedal running. It is shown that an otherwise
completely symmetrical robot model exhibits desired
behaviour—forward locomotion—through an asymmetry
introduced by an elastical spine. Furthermore, we show that
Port-Hamiltonian systems theory, especially in the form of
geometrical bond graph modelling, is an excellent way of
investigating and designing highly dynamical systems with
embodied intelligence.

It has already been shown in multiple quadrupedal runners
that an elastic rotational joint in the body or an actuated
rotational spine can improve performance: see for instance
Culha and Saranli (2011); Cao and Poulakakis (2012);
Pouya et al. (2012); Haueisen (2011). However, in this
case the spine is a full-dimensional spring with both
rotational and translational compliance—moreover, it is
solely responsible for any forward locomotion, being the
only asymmetry in the model.

Note that, in the final system, control will be shared
between “body” and “brain”, where the body—through
morphological computation—crudely generates the desired
locomotion behaviour, while a separate controller, the
“brain”, will be used to stabilise the gait. This paper adresses
the first part, the high-speed morphological computation.
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1.1 Geometrical bond-graph modelling

Bond graphs are a graphical, energy-consistent modelling
language, where storage elements, frictional elements
and energy sources are interconnected by bonds that
describe power flow between those elements, in the form
of effort and flow: generalised force and velocity. The
bonds can go through a transformer or gyrator to interface
different physical domains or to model power-continuous
transformations. In geometrical modelling !, the effort is
a wrench and the flow is a twist, both of which have a
geometrical interpretation of a screw (Stramigioli (2001)).
Geometrical reasoning gives direct insight in how to model
motions, coordinate transformations and, as is shown
later in Section 2.1, a three-dimensional spring (Fasse and
Breedveld (1998); Stramigioli (2001)).

Straight running happens mainly in the sagittal plane, so
considering the large number of parameters associated with
the elastic spine, the quadrupedal robot is modelled in the
sagittal plane only. Coordinate frames are indicated by ¥,
V¥, with a coordinate change from frame 7 to j represented
by a 3 x 3 homogeneous matrix H] € SE(2). The velocity
of a body A with respect to body P, expressed in ¥, can be
expressed as a twist TIIZ’P € se(2). Wrenches are elements
of se*(2); Wk 4 is a wrench exerted on body A, expressed
in \I/k.

Coordinate transformations of twists and wrenches are
calculated by the Adjoint map (Duindam et al. (2009)):

5" = Ad, TR, WoiA = Adf WA (1)
i J
2. MODEL

As explained in the introduction, the quadruped robot
is modelled in the sagittal plane and as such is two-
dimensional. It consists of interconnected rigid bodies and
is fore—aft symmetrical, with exception of the spine.
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Fig. 1. The two-dimensional quadruped robot model. All
joints are equipped with passive, linear springs; the
ankle joints also feature a force actuator.

Bodies  Both the anterior and posterior part consist
of three rigid bodies: the body, the leg and the foot,
respectively indicated with “body A/P”, “l4,p” and “f4,p”

L The application of Port-Hamiltonian Systems on manifolds

Table 1. Body dimensions and inertial proper-

ties.
| Width — Height Mass Inertia
Body 0.5m 0.2m 1kg  0.02kgm?
Leg 0.5m 0.lm  05kg  0.02kgm?
Foot 0.0lm 0.0lm 0.05kg 0.001 kgm?

Table 2. Stiffness parameters. Rest configura-

tion is the distance between the foot and the

bottom of the leg for ankle spings; the outward
rotation (extension) for hip springs.

Hip spring  Ankle spring
Stiffness 33Nmrad—! 300Nm~1
Rest configuration 5° 25 cm

in Fig. 1. Dimensions and inertial properties of these bodies
can be found in Table 1 and were chosen to result in a
realistic robot model.

Springs  Stiffness parameters for the hip (K}) and ankle
(K,) joints are listed in Table 2 and were chosen as follows.
Firstly, the ankle springs should carry the full body weight
without having the feet hit the legs, whilst facilitating
bouncing and a stance time that is long enough to allow
the controller (see Section 2.2) to insert a sufficient amount
of energy. A maximum deflection of 25 cm provides enough
stance time. Cavanagh and Lafortune (1980) found that
during running, the ground reaction force is typically 3-5
times the body weight, so a stiffness of 300 Nm™! allows
for 25 cm of spring deflection.

The hip spring stiffness was chosen such that it allows large
deflection during running (£45°) but does not collapse
under the body weight. For anteroposterior stability during
running, the rest configuration points the legs slightly
outward (5°) for a wider stance.

2.1 Spine

The spine is modelled as a geometric spring parameterised
by a centre of compliance, where the spring locally behaves
as a decoupled rotational stiffness k, and translational
kz O
0 k,
in frames W¥; and V¥; that are connected to body A
and B respectively; the minimal-energy configuration i.e.
equilibrium position is when ¥; and ¥; coincide and thus

stiffness K; = . The elastic wrench is applied

H! o = I3. See Fig. 2 for a schematic drawing.

For the three-dimensional case an expression for the elastic
wrench is known to be (Stramigioli (2001)):

' = —2as(G,R]) — as(G,Riplpl R]) — 2as(Gepl R])

fi= —R; aS(Gtﬁg)Rg - aS(GtR;ﬁZRg) - 2aS(GcRZ),
where H/ = 0 € SE(3) and Gyoy) are the

co-stiffness matrices for orientational, translational and
coupling stiffness, respectively. as(M) is an operator that
returns the antisymmetric part of a matrix M : £(M—MT).
The tilde form v is a 3 x 3 skew-symmetric matrix for which
holds 7w = v x w, if v and w are three-dimensional vectors.
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