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Abstract: This paper presents a method for the passive guaranteed simulation of a class of
finite-dimensional nonlinear port-Hamiltonian systems. This method combines two processes to
reach both the second order accuracy and explicit computations. First, we design a one-step two-
stage implicit numerical method for Port-Hamiltonian systems that preserves passivity. Second,
a change of state is proposed to yield an explicit computation. It requires assumptions on the
Hamiltonian variations. The complete method is illustrated on two basic examples for which

these assumptions are fulfilled.
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1. INTRODUCTION

Passive simulation is an important area of research as it
guarantees the numerical stability for nonlinear systems.

Several methods are available to compute passive simu-
lations, including for the sensitive issue of Hamiltonian
mechanical systems which are conservative. They include
Digital Waveguides, Wave Digital Filters and energy-
conserving finite difference schemes (see Vilain (2010);
Bilbao (2009); Julius (2010) for a review). In this work,
we consider the port-Hamiltonian formulation which pro-
vides passive descriptions (decomposed into conservative
and dissipative parts) of physical systems and of their

combinations, in the continuous time domain Duindam
(2009); Van der Schaft (2014).

Concerning Hamiltonian systems, numerous works have
been done to compute passive simulation including for
high-order accuracy Munthe-Kaas (1998); Del Buono
(2002); Iserles (2000). For port-Hamiltonian systems, a
numerical scheme based on a discrete definition of the
Hamiltonian gradient has been described by Yalin (2015);
Aoues (2014); Falaize (2014). In general, this method is
not second-order accurate and is implicit. The computa-
tion of the implicit method needs Newton-Raphson type
algorithm in which convergence issues may appear. Also,
a high sampling frequency is needed to decrease the con-
sistency error in the case of a one-order numerical scheme.
Whatever, those limitations increase the computing time.

This paper presents a method for the passive guar-
anteed simulation of finite-dimensional nonlinear port-
Hamiltonian systems. It combines two processes to reach
both the second order accuracy and explicit computations:
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a one-step two-stage implicit numerical method for Port-
Hamiltonian systems and a change of state to yield an
explicit computation. This method is applied to a partic-
ular class of finite-dimensional port-Hamiltonian system
and requires a strong assumption on the Hamiltonian
variations for the implicit process.

In the first part of this paper, recalls on Port-Hamiltonian
Systems and passive-guaranteed simulations are done in-
cluding a study of the order of consistency. In a second
part, we present the explicit second-order accurate method
with two examples. Finally, results of simulation are de-
scribed.

2. RECALLS ON PORT-HAMILTONIAN SYSTEMS
AND PASSIVE-GUARANTEED SIMULATIONS

2.1 Port-Hamiltonian systems

This section introduces a class of finite dimensional port-
Hamiltonian System. A general presentation can be found
in Duindam (2009).

A port-Hamiltonian system of state x, input v and output
y can be represented by the following differential equations

%= (J(x) - R(x))0x H(x) + G(x)u (1)
y = G(x)"9xH(x) + D(x)u (2)

where the positive definite function H denotes the energy
of the system with respect to the state, where matrices J
and D are skew-symmetric and where R is positive definite
(R > 0). This formulation guarantees the passivity as it
naturally encodes the power balance. Indeed, as J and D
are skew-symmetric, we have Ox H (x)TJ(x)0xH(x) = 0,
u’D(x)u = 0 and then,
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2.2 Discrete-gradient based numerical method

In this paper, we consider a zero-order hold for input u
(u(t) = u, for t € [t,,tnt1[) and a sampling period h.

In order to obtain the discrete-time formulation of a port-
Hamiltonian conserving the property of passivity, we can
use a discrete gradient based method already introduced
in Yalin (2015); Aoues (2014); Falaize (2014).

The derivative of the state in eq. (1) is approximated by
forward Euler as
5&: Xn—&-l_xn. (4)

h h

<

X

Also, to ensure the power balance eq. (3) in the discrete-
time case, the discrete version of Ox H* x must equal the
energy variation between two steps:

0L H (x,,, 0x,) 7 6%, = H(x, + 0x,) — H(x,) (5)
where 0% H(x,,,0%,) denotes the discrete gradient of the
Hamiltonian. For a N-dimensional system, the energy
variation can be decomposed into a sum of N differences,
as for example:

H(x + 6x) — H(x) = H(x + 0x) — H(x1,x2 + 0z2, ...)
+ H(x1,x2 + dx2,...) — H(x1, 22,23 + 023, ...)
4+ ...

+ H(zy,...,eN—1,zN + dzNn) — H(x). (6)
This decomposition depends on the chosen increment
order x of dx and leads to a particular version of discrete
Hamiltonian gradient that verifies eq. (5):
H(z1 + 6x1,...) — H(z1,z2 + 6z2, ...)
Sz

[0 H(x, 5x)]y = )

H(zy,....zN—1,2N +0zN) — H(z1,...,N_1,ZN)

Sz

More precisely, one chooses a particular solution of eq. (5)
as a definition of a discrete gradient in order to ensure a
discrete version of the power balance eq. (3). This solution
is based on a particular order x which may be chosen
advantageously according to the different cases. Also, one
can define a symmetrized version of the discrete gradient
that satisfies eq. (5) by averaging the solution for every
path:

L H (x, 6x) — % SO H(x, %), (8)

It appears that the definition of the discrete gradient
depends on the choice of coordinates. However, even in
this case, this method is still relevant. This property is
used in the section (3.2). Finally, with (4) and (8) the
discrete port-Hamiltonian system is described by:

0Xy,
S (I xn) -

Yn= G(Xn)Tach(xna 6Xn) + D(Xn)un

(10)
where o = Xnt1=Xn  — g and the slope s, is this

h
estimated state derivative. Thus, the discrete model leads

R(Xn))ach(xm 6xy) + G(xp)un (9)
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to a one-step one-stage implicit and passive method for
simulating:

M s, = (J(xp) — R(x))0%H(Xn, hs,) + G(x,)u,
! Xp4+1 = Xp + hsn,

2.8 Numerical analysis

This section is devoted to study the consistency order of
the above numerical method Mj. In the following, we
denote S = J—R and the subscript n is omitted to simplify

the notations . The notation f(h) = o(g(h)) is equivalent
to lim L% = .
h—0 9(h)

As proved in Demailly (2006) for the general case, we can
assert that the order of the method is at least ¢ if, and
only if:
. 1
Oh8lzg = 75700 S H (%) + G(x)u)
for:</¢—1.

Theorem 1. The numerical method M is consistent. (Or-
der 1)

Proof. Considering that H(x) is infinitely differentiable,

we can write the Taylor series of the multi-variable Hamil-
tonian function:

H(x +6x) = H(x) + 0xH(x)Téx + %6xT8,2<H(x)T6x + o(]6x|?)(11)

where 0% H is the Hessian matrix of the Hamiltonian. With
(5) and (11), we have,

1
0L H (x,,0%) = OxH(x,) + 5a,iH(xn)csx +0(6x). (12)
It comes directly from (M) and (12) that,

S|peo = S(x)0% H(x,0) + G(x)u
=S(x)0xH(x) + G(x)u

This proves that the method is consistent.

(13)
(14)

Theorem 2. The numerical method M is second-order
accurate if and only if S =J — R and G are independent
of x.

Proof. The order 1 proves that s = x+0(1). The equation
(12) can be rewritten:

1
0L H(x,sh) = Ox H(x) + iaf(H(x)sh + o(h)
Thus,

Ons = S(x) 9 (Ox H (x) + %a;cﬂ(x)sh +o(h) (1)

=S() (504 H(x)s + o(1)) (16)

and,
oSl = %S(x)a)iH(x)x (17)
— 280D (O H(x)). (18)
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