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1. INTRODUCTION

The zeros of the transfer function of a system are well-
known to be important to controller design for finite-
dimensional systems; see for instance, the textbooks Doyle
et al. (1992); Morris (2001). For example, the poles of a
system controlled with a constant feedback gain move to
the zeros of the open-loop system as the gain increases.
Furthermore, regulation is only possible if the zeros of
the system do not coincide with the poles of the signal
to be tracked. Another example is sensitivity reduction -
arbitrary reduction of sensitivity is only possible all the
zeros are in the left-hand-plane. Right-hand-plane zeros
restrict the achievable performance; see for example, Doyle
et al. (1992) . The inverse of a system without right-hand-
plane zeros can be approximated by a stable system, such
systems are said to be minimum-phase.

The zero dynamics are a fundamental concept relating to
the differential equation description. The zero dynamics
are the dynamics of the system obtained by choosing the
input u so that the output y is identically 0. This will
only be possible for initial conditions in some subspace
of the original subspace. For linear systems with ordinary
differential equation models, the eigenvalues of the zero
dynamics correspond to the zeros of the transfer function.
Zero dynamics are well understood for finite-dimensional
systems, and have been extended to nonlinear finite-
dimensional systems Isidori (1999).

But many systems are modeled by delay or partial dif-
ferential equations. This leads to an infinite-dimensional
state space, and also an irrational transfer function. As
for finite-dimensional systems, the zero dynamics are im-
portant. For instance, results on adaptive control and on
high-gain feedback control of infinite-dimensional systems,
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see (Logemann and Owens, 1987; Logemann and Town-
ley, 1997, 2003; Logemann and Zwart, 1992; Nikitin and
Nikitina, 1999, e.g.), require the system to be minimum-
phase. Moreover, the sensitivity of an infinite-dimensional
minimum-phase system can be reduced to an arbitrarily
small level and stabilizing controllers exist that achieve
arbitrarily high gain or phase margin Foias et al. (1996).

The notion of minimum-phase can be extended to infinite-
dimensional systems; see in particular Jacob et al. (2007)
for a detailed study of conditions for second-order systems.
Care needs to be taken since a system can have no
right-hand-plane zeros and still fail to be minimum-phase.
The simplest such example is a pure delay. There are
a number of ways to define the zeros of a system; for
systems with a finite-dimensional state-space all these
definitions are equivalent. However, systems with delays,
or partial differential equation models have state-space
representations with an infinite-dimensional state space.
Since the zeros are often not accurately calculated by
numerical approximations Cheng and Morris (2003); Clark
(1997); Grad and Morris (2003); Lindner et al. (1993) it
is useful to obtain an understanding of their behaviour in
the original infinite-dimensional context. Extensions from
the finite-dimensional situation are complicated not only
by the infinite-dimensional state-space but also by the
unboundedness of the generator A.

In this paper, we consider zero dynamics of a class of
partial differential equations with boundary control. For
infinite-dimensional control systems where interchanging
the role of the control and the output leads to a well-
posed system, calculation of the zero dynamics is straight-
forward. Such systems must be non-strictly proper in a
very strict sense, and this assumption is generally not
satisfied. For strictly proper systems, the zero dynamics
can only be calculated in special cases. For systems with
bounded control and observation, the zero dynamics can
calculated, although they are not always well-posed Zwart
(1989); Morris and Rebarber (2007, 2010). In Byrnes et al.
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(1994) the zero dynamics are found for a class of parabolic
systems defined on an interval with collocated boundary
control and observation. However, no other results on
zero dynamics for strictly proper systems with boundary
control and observation are known. Here we consider an
important class of these systems, port-Hamiltonian sys-
tems. Such models are derived using a variational approach
and many situations of interest, in particular waves and
vibrations, can be described in a port-Hamiltonian frame-
work. In this paper it is assumed that the wave speeds
are commensurate. For these systems, the zero dynamics
are well-defined. Furthermore, the zero dynamics can be
calculated using simple linear algebra calculations. This is
illustrated with some examples.

2. PROBLEM FORMULATION

Consider systems of the form

∂x

∂t
(ζ, t) = P1

∂

∂ζ
(Hx(ζ, t)), ζ ∈ (0, b), t ≥ 0 (1)

u(t) =WB,1

[
x(b, t)
x(0, t)

]
, t ≥ 0 (2)

0 =WB,2

[
x(b, t)
x(0, t)

]
, t ≥ 0 (3)

y(t) =WC

[
x(b, t)
x(0, t)

]
, t ≥ 0, (4)

where P1 is an Hermitian invertible n × n-matrix, H is a

positive n×n-matrix, andWB :=
[
WB,1

WB,2

]
is a n×2n-matrix

of rank n. Such systems are said to be port-Hamiltonian,
see Le Gorrec et al. (2005); Villegas (2007); Jacob and
Zwart (2012).

The matrices P1H possess the same eigenvalues counted
according to their multiplicity as the matrix H1/2P1H1/2,
and as H1/2P1H1/2 is diagonalizable the matrix P1H is
diagonalizable as well. Moreover, zero is not an eigenvalue
of P1H and all eigenvalues are real, that is, there exists an
invertible matrix S such that

P1H = S−1diag(p1, · · · , pk, n1, · · · , nl)S.

Here p1, · · · , pk > 0 and n1, · · · , nl < 0. We assume
that the numbers p1, · · · , pk,−n1, · · · ,−nl are commen-
surate, that is, there exists a number d ≥ 0 and
a1, · · · , ak, b1, · · · , bl ∈ N such that

pj = ajd, j = 1, · · · , k, nj = −bjd, j = 1, · · · , l.
Introducing the new state vector[

x+(ζ, t)
x−(ζ, t)

]
= Sx(ζ, t), ζ ∈ [0, b],

with x+(ζ, t) ∈ Ck and x−(ζ, t) ∈ Cl, and writing

diag(p1, · · · , pk, n1, · · · , nl) =

[
Λ 0
0 Θ

]
,

where Λ is a positive definite diagonal k × k-matrix and
Θ is a negative definite diagonal l × l-matrix, the system
(2)–(4) can be equivalently written as

∂

∂t

[
x+(ζ, t)
x−(ζ, t)

]
=

∂

∂ζ

([
Λ 0
0 Θ

] [
x+(ζ, t)
x−(ζ, t)

])
, (5)

[
0

u(t)

]
=

[
K11 K12

K21 K22

]

︸ ︷︷ ︸
K

[
Λx+(b, t)
Θx−(0, t)

]
+

[
Q11 Q12

Q21 Q22

]

︸ ︷︷ ︸
Q

[
Λx+(0, t)
Θx−(b, t)

]
,(6)

y(t)=[O21 O22]

[
Λx+(b, t)
Θx−(0, t)

]
+[R21 R22]

[
Λx+(0, t)
Θx−(b, t)

]
,(7)

where t ≥ 0 and ζ ∈ (0, b).

Theorem 1. Zwart et al. (2010), (Jacob and Zwart, 2012,
Thm. 13.2.2 and 13.3.1). The system (5)–(7) is well-posed
on L2([0, b];Cn×n) if and only if the matrix K is invertible.

Well-posedness implies that for every initial condition
x0 ∈ L2([0, b]];Cn) and every input u ∈ L2

loc((0,∞);Cp)
the mild solution

[ x+
x−

]
of the system (5)–(7) is well-defined

in the state space X := L2([0, b];Cn) and the output
is well-defined in L2

loc((0,∞);Cm). Moreover, for port-
Hamiltonian systems, well-posedness implies that the sys-
tem (5)–(7) is also regular, see Zwart et al. (2010) or (Jacob
and Zwart, 2012, Section 13.3). Writing [O21 O22]K−1 =
[∗ E] with E ∈ Cm×p, the matrix E equals the feedthrough
operator of the system, see (Jacob and Zwart, 2012, Sec-
tion 13.3). For the remainder of this paper it is assumed
that K is invertible.

Definition 2. Consider the system (5)–(7) on the state
space X = L2([0, b];Cn). The largest output nulling
subspace is

V ∗ = {x0 ∈ X | there exists a u ∈ L2
loc((0,∞);Cp) :

the mild solution of (5)–(7) satisfies y = 0}

The zero dynamics is described by the system

∂

∂t

[
x+(ζ, t)
x−(ζ, t)

]
=

∂

∂ζ

([
Λ 0
0 Θ

] [
x+(ζ, t)
x−(ζ, t)

])
, (8)

0=

[
K11 K12

O21 O22

][
Λx+(b, t)
Θx−(0, t)

]
+

[
Q11 Q12

R21 R22

][
Λx+(0, t)
Θx−(b, t)

]
, (9)

u(t)=[K21 K22]

[
Λx+(b, t)
Θx−(0, t)

]
+[Q21 Q22]

[
Λx+(0, t)
Θx−(b, t)

]
, (10)

where t ≥ 0 and ζ ∈ (0, b).

3. INVERTIBLE FEEDTHROUGH OPERATOR

Inspection of (8)–(10) reveals that the largest output-
nulling subspace V ∗ = L2([0, b];Cn) has well-posed zero
dynamics if and only

K̃ :=
[
K11 K12

O21 O22

]

is invertible (Theorem 1). In this case, the zero dynamics
are well-posed on the entire state space.

Theorem 3. Assume that the number of inputs equals the
number of outputs. Then the zero dynamics are well-posed
on the entire state space if and only if the feedthrough
operator of the original system is invertible.

Proof: In Section 2 we showed that the feedthrough
operator E is given as

[O21 O22]K
−1 = [∗ E] .

Hence if u �= 0 lies in the kernel of E, then

[O21 O22]K
−1

[
0
u

]
= 0.
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