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Abstract: This paper proposes an optimal feedback control design for the nonlinear partial
differential equation of a catalytic rod in a reactor via stable manifold method. Stable manifold
method provides numerical stabilizing solutions of Hamilton-Jacobi equations in nonlinear
optimal control theory. We apply this method to a reduced order system obtained from the
proper orthogonal decomposition and Galerkin projection. The feasibility of the design is

demonstrated by a numerical example.
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1. INTRODUCTION

Important control objects with complexity in engineering,
e.g., thermal process, chemical process, fluids, and flexible
structures can be described by partial differential equa-
tions (PDEs). Such systems of PDEs generally possess
nonlinearity and an infinite degree of freedoms; therefore,
it is quite difficult to apply systematic control designs to
them. As a solution of overcoming the difficulty, this paper
proposes an optimal regulator design for controlling heat
distributions of a catalytic rod in a reactor in terms of
POD-Galerkin method (Holmes et al., 1998) and stable
manifold method (Sakamoto and van der Schaft, 2008).

The proper orthogonal decomposition (POD) basis is a
set of basis functions obtained from time responses of the
systems. POD-Galerkin method is a model reduction tech-
nique for deriving approximate lower dimensional systems
of ordinary differential equations described by a POD basis
from systems of PDEs, which has been widely applied
to fluid mechanics (please see, e.g., Holmes et al. (1998);
Kunisch et al. (2004)).

Stable manifold method is an efficient numerical solver
for calculating stabilizing solutions of Hamilton-Jacobi
equations (HJEs) in nonlinear optimal control problems.
HJEs are first-order partial differential equations, and it is

* This work was supported by JSPS KAKENHI Grant Numbers
26420415 and 26630197.

difficult to analytically solve them except for some special
cases. Stable manifold method has been applied to various
practical nonlinear systems (Sakamoto, 2012).

The procedure of the control design presented in this paper
is as follows. We first derive a reduced model from a
control system of PDEs by POD-Galerkin method. Next,
we formulate a nonlinear optimal control problem for the
reduced model with a desired cost function. Finally, we
find stabilizing solutions of the HJE of the problem by
stable manifold method. The solutions can determine the
nonlinear gain of the optimal feedback controller.

In this paper, we consider a thermal control of a cat-
alytic rod in a reactor as an illustrative example of the
optimal control. The thermal controls have been stud-
ied (Christofides, 2001; Ray, 1980), in particular, there is
also a result via POD-Galerkin method (Varshney, 2009).
However, these are studied from mainly the viewpoint of
stabilization. Hence, we attempt to incorporate optimality
into the control, which has not been sufficiently discusses
yet.

In the catalytic system, the origin that means a uniform
distribution of temperatures is an unstable equilibrium
point, and a stable equilibrium point is some distance away
from the origin. We show that the nonlinear regulator can
achieve a state transition between these equilibria with
less control inputs in the sense of optimal control. This
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control is expected to develop ecological process controls
for complex systems described by PDEs.

2. SUMMARY OF MODEL REDUCTION VIA
POD-GALERKIN METHOD

2.1 Notations

Let X be a real Hilbert Space. The inner product and
the norm in X are denoted by (-,")x, || - ||x, respectively.
X' denotes the dual space of X, and (-,-)x/xx denotes
the dual pairing. We define the space L2(0,7;X) for
0<T <

L*(0,T; X) = {w(t) € X ae. t € (0,T) |

T
/ mwm%u<w}, 1)
the space

W(0,T;X) = {¢ € L*(0,T: X) | ¢ € L*(0, 5 X)}, (2)
and the set
Wioe (0,003 X) := (] W(0,T; X). (3)
T>0
Let V and H be real separable Hilbert spaces such that
V C H and V dense in H. We assume that the injection
of V C H is compact. We consider a symmetric bilinear
continuous form a : V x V' — R that is coercive, i.e., there
exists a constant £ > 0 such that a(v,v) > kl|¢[|?, for all
v € V.Let N :V — V' be a nonlinear continuous operator
mapping satisfied N(0) = 0 and it’s Frechet derivative
N'(0) =0.

2.2 Control systems

We consider the nonlinear evolution equation

L), o) + aly(t), )

dt (4a)
+(N((®),p)vv = (Bu(t), p)vv
for all ¢ € V' with the initial condition
y(0) = yo € H, (4b)

where y(t) € V is the state, u(t) € R™ is the control input
and B : R™ — V' is a continuous linear operator.

2.3 Proper orthogonal decomposition

Let us consider the set of functions

U=A{yr: ye € X}y, (5)
where X is a separable Hilbert space and n is the number
of elements in U. Practically, U is derived from a free
response y(t) of the system (4a, 4b) with u(t) = 0, i.e.,
Yk = y(tr) at each discrete time t, for k = 1,--- ,n, which
is called a snapshot set. We define an average of the image
f(U) by

G =23 f). ©)
k=1

where f isamap f: X - Ror X.

We shall consider an optimal orthogonal basis for describ-
ing the set U. We first define a function ¢ as the optimal
solution maximizing the objective function
2
veX ol

The optimal solution ¢ is the most parallel function to the
set U in the sense of mean square.

From the necessary condition of the optimality, we can
obtain the following relation (Holmes et al., 1998):

Re = Ao, (8)
where A € R is non-negative and R: X — X is defined by
Rep = ((Yr> L)Yk ) k- (9)

Actually, R is a compact operator, and there exist an
optimal solution of (7). The maximum value of (7) corre-
sponds with the maximum eigenvalue of (8). By Hilbert-
Schmidt theorem, there exist an orthonormal basis con-
sisting of eigenvectors in (8). Then, there exist eigenvalues
A1 > Ag--- > 0. The orthogonal basis obtained from this
procedure is called a POD basis.

Remark 1. We don’t directly solve the eigenvalue problem
of (8) to get a POD basis, but another eigenvalue problem
of a certain matrix K, because the former is difficult to
solve it (Kunisch et al., 2004). The matrix £ € R"*" is
defined by

1
where U : R™ — X is the linear bounded operator such
that
Uv = Z VY (11)
for v = [vy, -+ ,v,]T € R", and U* is the adjoint operator
of U, i.e.,

U'w = [(wvyl)v"' 7(w7yn)]T (12)
for w € X. Then, the map R : X — X can be considered
as

L

R = EUU , (13)

where R is bounded, non-negative and self-adjoint opera-
tor.

2.4 Galerkin projection and reduced order models

A POD basis can efficiently represent the energy of free
responses used for making snapshot sets (Holmes et al.,
1998). The ratio of an energy described by primal basis
functions up to r-th to a total energy can be expressed as

5(’[”) = Z)\J/ZAJ
j=1 j=1

By using Galerkin projection with POD basis, we can de-
rive a finite-dimensional reduced system from an infinite-
dimensional system (4a, 4b). We first determine a reduced-
order r to sufficiently describe the response, namely £(r) =
1. Then, the signal y can be written as follows:
ks
y(t) = ai(t)pi-

i=1

(14)

(15)

By substituting (15) into the left-side of (4a) and take
the inner product with each basis ¢; for j = 1,---,r,
the finite-dimensional reduced system can be written as
follows:

a = Aya+ Ny(a) + Byu, (16)
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