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A B S T R A C T

A novel method based on variational mode decomposition (VMD) and cross-time–frequency spectrum (CTFS) is
proposed for leak location in natural-gas pipelines. Leakage signals are decomposed into mode components by
VMD, and an adaptive selection method using mutual information is proposed to process these mode compo-
nents and obtain the sensitive components closely related to the leak. CTFS is applied to analyze the time–-
frequency distribution of sensitive mode components. The delay and the corresponding frequency information
are extracted when CTFS reaches the maximum. The corresponding frequency is used to calculate the group
velocity of wave speed, in combination with the dispersive curve. Finally, the time-delay information and wave
speed can be used to determine leakage source. The proposed scheme has been experimentally validated; the
results demonstrate that the average relative location errors are reduced to one-third when compared with the
CTFS location method based on empirical mode decomposition (EMD).

1. Introduction

Recently, as the natural-gas demand increases with each passing
day, gas pipelines have undergone dramatic developments [1,2].
However, leaks occur frequently for reasons such as pipeline corrosion
and weld defects; this poses an enormous hidden threat to the safe
operation of the pipeline. Hence, it’s necessary to conduct locating
study of pipeline leakage source and guarantee safe operation of nat-
ural-gas pipeline systems [3–5]. The current methodologies primarily
require special sensing devices to detect and locate pipeline leaks, such
as cable sensor, optical fiber, and acoustic monitoring [6–8]. However,
these methods are complexity of installation, and very expensive.

When a pipeline suffers a leak, gas–solid coupling occurs between
the gas that escapes rapidly and the leakage hole in the wall; this
generates stress waves that will spread along the pipeline to either side
of the leakage hole [9,10]. He Cunfu et al. [10] regarded the stress wave
as a kind of acoustic-emission signal and applied it in the leakage-lo-
cation procedure; this process obtained a good location result. There-
fore, this study uses this acoustic-emission technique to locate the
source of leak in a natural-gas pipeline. The traditional acoustic-emis-
sion location method mainly uses cross-correlation to calculate the
delays in the leakage signals, which assumes the wave speed to be
known and to be constant [11–13]. However, a dispersion phenomenon
occurs when the leakage signal is transmitted along the pipe wall. The

wave speed varies with the frequency and the assumption is not sup-
ported, resulting in missing the detection and location of a gas leak
[4,14–17]. Hence, the location study of dispersive signals is of great
significance.

Because the leakage signals generated by a pipeline leak are non-
stationary, a non-stationary signal processing method must be em-
ployed to obtain information from the leak [18]. Conventional signal
analysis methods such as the windowed Fourier transform, which re-
quires that the signals meet stationary and linear assumptions [19]. The
wavelet analysis method has advantageous local features in the time
and frequency domains and is thus more suitable for the analysis of
acoustic emission signal characteristics than windowed Fourier trans-
form [8]. As wavelet analysis is essentially an adjustable window
Fourier transformation, energy leakage occurs inevitably owing to the
limited length of the wavelet base function. On the other hand, once the
wavelet base function and decomposition scales have been determined,
the results of a wavelet transform will be solely functions of the sam-
pling frequency [20,21]. The EMD, which is a classical non-stationary
signal processing method [19], can self-adaptively decompose a com-
plicated multi-component signal into the sum of several intrinsic mode
functions (IMFs) components and use this IMF to calculate the in-
stantaneous frequency and amplitude [22,23]. As the EMD process is
completely based on the characteristics of the signal, there is no re-
quirement for manual selection of the basis function. Therefore, it has
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been extensively applied in fields like mechanical failure diagnosis and
EEG processing; however, this method still has some defects such as the
mode-mixing effect, end effect, etc. [24–26]. VMD is a new non-sta-
tionary signal processing method proposed in 2014, its decomposition
process determines the center frequencies and bandwidths of the mode
components after decomposition through an iterative seek for an op-
timal solution to the variational model, by which it can self-adaptively
decompose non-stationary signals [27,28]. Compared to the recursive
“screening” mode of the EMD, VMD can non-recursively decompose a
multi-component signals into a number of components and controls the
decomposition convergence conditions reasonably [29]. Hence, the
decomposition process can effectively eliminate the mode-mixing
phenomenon with good noise immunity.

Based on the above analysis, this paper proposes a leakage-source
location method for natural-gas pipelines based on VMD and CTFS. The
VMD method is used to analyse the leakage signal and obtain accurate
mode components. A mutual-information–based adaptive selection
method is proposed to select the sensitive mode components of the
leakage signals. CTFS analysis of the sensitive mode components, of the
leakage signals collected by different sensors, can obtain the delay and
the corresponding frequency information of the leakage signals; the
corresponding frequency information can be used to acquire the fre-
quency-dependent wave speed. Finally, the source of the leak can be
located using the frequency-dependent wave speed and delay, ac-
cording to the proposed method.

The remainder of this paper is organized as follows. Section 2 dis-
cusses the VMD method. Section 3 is dedicated to a description of the
proposed adaptive selection algorithm based on mutual information,
and a simulation is generated to illustrate the method. In Section 4, the
location method based on VMD and CTFS is presented. The proposed
leak-location scheme is experimentally validated and compared with
the location method based on CTFS and EMD in Section 5, and the
conclusions of this paper are given in Section 6.

2. Variational mode decomposition

Variational mode decomposition is a new self-adaptive signal pro-
cessing method, which was first proposed by Dragomiretskiy in 2014.
This method achieves self-adaptive decomposition of the signal through
the construction and solution of variational problems [27–29]. Any
signal f t( ) can be written in the following form:

∑=f u(t) (t)
k

k
(1)

In Eq. (1), u (t)k is the component after decomposition. u (t)k is defined
as a frequency-modulation–amplitude-modulation (AM–FM) signal, and
its mathematical expression is as follows:

=u ϕ(t) A (t)cos( (t))k k k (2)

In Eq. (2), A (t)k is the instantaneous amplitude and ω (t)k is the in-
stantaneous frequency; ω (t)k is given by = ′ =ω ϕ(t) (t)k k

dϕ
dt

(t)k .
The VMD algorithm transfers the signal decomposition process into

the variational framework. Hence, the decomposition process of the
VMD is an optimal-solution processing for a constrained variational
process. The mathematical expression of its corresponding constrained
variational model is as follows:
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In Eq. (3), = …u u u{ } { , , }k k1 represents k components after decomposition
and = …ω ω ω{ } { , , }k k1 represents the center frequencies of the compo-
nents after decomposition; δ t( ) is impulse function.

For constrained-variation problems, the augmented Lagrange func-
tion is introduced to transform the constrained variation problem into
an unconstrained variation problem; the mathematical expression for

the augmented Lagrange function is as follows:
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In Eq. (4), α is the penalty parameter and λ is the Lagrange multi-
plier.

In order to solve the problem of obtaining an optimal solution, the
alternate direction method of multipliers (ADMM) is used to calculate
the saddle point of the augmented Lagrange function, which is the
optimal solution of the constrained-variation equation [30]. The saddle-
point problem is solved by the alternate renewal of +uk

n 1, +ωk
n 1, and +λn 1,

i.e., solving the optimal-solution problem of the variational problem.
The mathematical expressions of +uk

n 1 and +ωk
n 1 are as follows:

∑

=
⎧
⎨
⎩

∂ ⎡
⎣⎢

⎛
⎝

+ ⎞
⎠

∗ ⎤
⎦⎥

+ − +
⎫
⎬
⎭

+

∈

−u α δ
j

πt

f u λ

argmin (t) u (t) e

(t) (t) (t)
2

k
n

u X
t k

jω t

i
i

1

2

2

2

2

k

k

(5)

= ⎧
⎨⎩

∂ ⎛
⎝

+ ⎞
⎠

∗ ⎫
⎬⎭

+ −ω δ
j

πt
targmin [ (t) u ( )]ek

n

ω
t k

iω t1

2

2

k

k

(6)

In Eqs. (5) and (6), ωk is equal to +ωk
n 1, and ∑ u (t)i i is equal to

∑ ≠
+u (t)i k i

n 1.
The Parseval/Plancherel Fourier isometric transformation is used to

transform Eqs. (5) and (6) into the frequency domain, thus updating the
frequency domain and center frequencies of the modes. Their mathe-
matical expressions are as follows:
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In Eq. (7), ̂ +u ω( )k
n 1 is equal to the Wiener filter of ̂ ̂− ∑ ≠f ω u ω( ) ( )i k i . The

gravity center of the current modal function power spectrum in Eq. (8)
is +ωk

n 1, and the real part of ̂u ω{ ( )}k conducting Fourier inversion is
u t{ ( )}k .

The VMD algorithm continuously updates the modes in the fre-
quency domain, and finally transforms them into the time domain
through the Fourier inversion. The specific algorithm is as follows:
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(4) Renew λ according to ̂ +λ ω( )n 1
for ⩾ω 0.
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