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how to plan a binary test.

Unlike in traditional measurement methods, in binary testing each test item provides only one bit of information.
In view of limited test resources, effective planning of the test is crucial. In this article, the general problem is
formulated from the metrological point of view for a high variety of objects under test and a homogeneous item
response function. Different optimization criteria are reviewed for one-item testing (single and replicated), and
their advantages and disadvantages are discussed. The article concludes with preliminary recommendations for

1. Introduction

Binary tests have many practical purposes and in recent years,
substantial progress in the analysis and interpretation of binary test
results in engineering applications has been achieved [1-12]. Binary
tests are not very informative, since they supply very few bits of in-
formation, and therefore the issue of planning/design of these tests
becomes especially important. In this paper, we restrict ourselves to the
simplest issue of measuring a unidimensional ability a, when the test
item performance of the object under test (OUT) can be explained by a
single latent ability. OUT can mean an electronic or mechanical com-
ponent, process, data, program unit or material under test, etc. A sta-
tistical hypothesis test can also serve as an example of a binary test [5].
A special case is created when the OUT is a person, whose cognitive/
physical abilities are studied by psychometrics ([16,17] and references
therein), kinesiology (e.g., [18]) and other disciplines. We do not
consider ourselves experts in such a complex field, but hope that some
ideas, presented below, may be useful there also. In recent years, one
can observe a promising mutual diffusion of ideas between me-
trological, engineering and psychometric test approaches [19-24].

The test consists of a set of K non-destructive test items. Every test
item response is scored on a binary scale (pass/fail) and the target is to
evaluate the intrinsic ability of the tested OUT. Usually, it is assumed
that the results of different test items, applied to the same OUT, are
conditionally independent (i.e., the response to one test item does not
affect the response to another). Given a specific item response function
(IRF) model, i.e., the probability that the OUT with ability a success-
fully overcomes the test item having difficulty d, assessment of the
tested ability is usually based on the principle of maximum likelihood
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estimation (MLE). When the levels of test item difficulties (d,d,,...,dx)
are known beforehand, the solution of the problem is relatively easy,
but when the number of OUTs is bounded and the levels of difficulties
are unknown beforehand, the resulting analysis involves significant
computational difficulties. Nevertheless, in principle, the problem of
measuring/scoring the tested abilities is solvable.

However, when we think how to allocate test resources optimally,
we are faced with several problems: how to choose the levels of test
item difficulties, how many repetitions to perform for every level, what
is the criterion of optimality, etc.

Perhaps, the most serious attention to these questions was given in
the field somewhat remote from engineering: in psychometrics and
educational measurement [25-34], when developing banks of test
items and sequential computer adaptive testing (CAT). In light of our
article, approaches using various information aspects for planning a test
and estimating the uncertainty of its result are of main interest [16,23
and references therein]. Nevertheless, the overwhelming majority of
the abovementioned studies are based on properties of the Rasch item
response model [25] and its latest modifications [30,33], recognized as
the main model in psychometrics.

The difference between psychometrical, technical, financial, statis-
tical, physical and other tests consists in the models used to describe the
specific item response function (IRF). In technical, financial, statistical,
physical testing, the response models may differ significantly and no
longer have the remarkable properties of the Rasch model [35], while
acquiring some other properties (such as self-similarity, for example
[5,6,12]) The mathematical expressions of the IRF in most cases are
quite distinct. Therefore, it makes sense to discuss the problem of
binary test planning from the most general principles point of view.
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Table 1
Ability vs. difficulty.

Ability Difficulty

The size of the defect
Trip wire current
Applied load

Shift value

Of a detector to detect a defect

Explosiveness

Mechanical strength

Of a control chart to detect a shift in the mean of the
process

Of an athlete to physically jump upwards Bar height

This paper offers possible approaches to the test planning problem not
limited to the specific item response model, although the illustrative
examples are tied to a self- similar model, described in the following
section.

2. Item response function (IRF) model
The two main components of binary testing are:

(1) The object under test (OUT)
(2) The test item (TD).

An OUT is characterized by its ability (to be precise: level of ability),
a. This can be the ability of the detector to detect a defect, the explosive
sensitivity of a material, mechanical strength, the ability of a control
chart to detect a shift in the mean of a process, an athlete’s physical
ability to jump upwards, etc.

TI is characterized by its difficulty (to be precise: level of difficulty),
d. This can be, accordingly, the size of the defect, the current in a trip
wire, applied load, shift value, bar height, etc. (see Table 1).

Except in the cases when the result of testing is predetermined by
the values of ability and difficulty, the relationship between them is
described by the so-called item response function (IRF) — P(d,a). This
expression represents the probability that the OUT with ability a will
successfully pass the test item of difficulty d. Each specific area of study
has its own, and often not only one, IRF model. Starting in psycho-
metrics, the IRF concept has spread to a variety of areas including social
and behavioral sciences [22,23], educational measurement [10,11,14],
medicine [17], quality engineering [6-8] and other practical testing
problems [36].

In most cases, ability and difficulty (directly or through some
transformation) can be brought to the same measuring scale. Under
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such conditions, so-called scale invariant models [12] are usually used.
In these models, changing the unit of measure does not affect the
probability of successfully passing the test item. This means that the IRF
satisfies the Euler functional equation P (4d,Aa) = P(d,a) for any 1 > 0
implying that the IRF is a homogeneous function of the zeroth order. It
is known [15] that the only non-trivial solution of this equation is of the
form P(d/a), i.e., the IRF is a function of the ratio between difficulty
and ability and not of each of them separately. For certainty, our further
reasoning is based on the following IRF of this type, which originated in
statistical process control [5] (see Appendix for its derivation):

P(d/a) = 1—<1>(\/§~1n5),

a (@)
where @ denotes the standard normal cumulative distribution function.
According to this model, 0 < a, d < 1, where d = 1 indicates a placebo.
Common with the Rasch IRF is that P(d/a) = 0.5 whend = a. In Fig. 1,
this IRF is depicted as a function of the ratios a/d and d/a.

3. Use of preliminary (prior) information

What happens when we have information prior to testing and when
we do not?

e When there is a complete lack of any information regarding the
measured ability—the ability is evaluated based on test results only.

e When we have some prior information, some assumptions regarding
the tested ability, expressed by the prior probability density function
f(a), can be made. For example, considerations based on historical
data can be involved. In this case, the Bayesian approach of re-
evaluating the prior hypothesis is required. The exception is the
situation in which the information received from the test is much
greater than what was assumed about the ability before testing. In
this case, preliminary information can be neglected.

4. Notation prelude

Suppose that K test items having the same or different difficulty

levels (dy,dy,ds,...,d,...dg) = 3 are applied to the OUT. The result of the
whole test can be presented as a data vector/sequence of ones and
zeros, such as s = (81,52,83,+-»8ks---8x ) = (1,0,1,...,0,...0,...1), where 1 means
that the corresponding test item passed successfully and O otherwise.
Clearly, there are 2X possible test results and, respectively, 2% possible
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Fig. 1. (a) IRF vs. a/d according to (1). (b) IRF vs. d/a according to (1).
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