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In this letter we suggest a method for the evaluation of a surface’s topography which we call the correlogram
correlation method. Employing a theoretical analysis as well as numerical simulations the method is proven to be
the most accurate among available evaluation algorithms in the common case of uncorrelated noise. We obtain
variance estimations for conventional methods and compare them to simulations. Experimental examples il-

lustrate the superiority of the correlogram correlation method over the common envelope and phase methods.

1. Introduction

Since the beginnings of White Light Interferometry (WLI) it has been
clear that WLI is a powerful tool to determine the topography of a
surface [1]: The WLI signal is a correlogram wave packet I. The shift z,
of its position on the scanning axis z signals a change of the local height
of the reflecting surface. There exist two established methods to localize
zo on the axis z [2]: the phase method originally introduced in the
monochrome interferometry (PSI — Phase Shifting Interferometry) and
the correlogram envelope evaluation method (CSI — Coherence Scan-
ning Interferometry) which relies on the properties of the broad WLI
signal spectrum. However, both methods harvest only parts of the in-
formation contained in a measured correlogram. As a consequence, the
envelope evaluation methods suffer from low precision [2] and PSI is
subjected to the 2w ambiguity of phase determination [3]. Numerous
attempts exist to marry both procedures [4-6], but their success is
limited [6], because the information contained in the correlogram is
still only partly employed. To use the complete information one has to
consider the full shape of the correlogram, which is achieved by the
method presented here. We obtain and compare analytical and nu-
merical estimations of noise variances of the common WLI-methods and
the proposed method. Examples of practical application accomplish the
study.

In the absence of noise/other disturbances - the only changes to the
shape of the correlogram are contrast scaling and a shift of its position
along the scanning axis. In order to locate the surface, one has to search
for the expected correlogram pattern on the scanning axis. The best way
to do so is to find the position of maximum correlation with a reference
correlogram by calculating the cross-correlation function. The arising
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method, which we name correlogram correlation or, for the sake of
brevity, CorCor method, is illustrated in Fig. 1. The idea to look for the
position of a characteristic pattern in the measured correlogram has
been in one way or another touched on by some authors, e.g. in [6-9],
but the approach has been only considered as an additional procedure
for specific purposes. The works [7,8] apply it to the special case of
transparent film metrology. While [7,8] employ a complicated window
shifting procedure combined with a least-square estimation to find the
correlogram position, the authors of [6,9] do not consider the idea of a
reference correlogram, but use a model correlogram instead, which
results in loss of information and the deterioration of precision. In [6]
correlations with a sequentially shifted model packet are used to de-
termine the envelope position and the base harmonic phase distribu-
tion. On the whole, implementations of the principle of correlogram
correlation are hitherto hardly to be found in WLI-applications, in spite
of the fact that the correlation procedures are widely used in other
areas. The reason is that in the area, it has never been pointed out that
the method is just bound to be the most precise, which is easily shown
mathematically.

An additional important advantage of the proposed method is the
fact that it provides a direct criterion for the appropriateness of a cor-
relogram measured on any point on the surface — the covariance with
the reference correlogram at the best fitting position. This criterion is
more informative and useful than the commonly employed criterion of
the magnitude of maximum contrast [2]. The repeatability of surface
height gauging is often used as the measure of WLI accuracy/un-
certainty [6]. We use the noise-induced variance of height estimation as
the direct measure of uncertainty both for numerical and experimental
assessments.
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Fig. 1. The correlogram correlation (CorCor) method: search for the position z,
of optimal fitting of a reference correlogram I to a measured correlogram J. At
20 the correlation between I and J is maximal.

2. Comparison of height estimation methods
2.1. Application of the maximum likelihood method to WLI signals

To see that the cross-correlation technique is the best way to as-
certain the correlogram position let us obtain z, following the
Maximum Likelihood Method (MLM) [10]. Let I; = I(z; — 2o) be the
reference correlogram of the interferometer at measurement points z;
shifted to the position z,. Then for the measured correlogram J; holds

(€3]

where §; represents a discrepancy between J; and the reference corre-
logram stemming from noise, which we assume to be uncorrelated and
Gaussian. It is an appropriate assumption for many applications
[11,12]: the camera shot noise is of this kind; the observed N”* de-
pendence of the height estimation variance on the number of mea-
surement points N [2] indicates the absence of noise correlation. Fol-
lowing the MLM, among possible shift positions z, of I; we have to
choose the one, at which the probability that the measured correlogram
is constituted by the I; and noise §; is maximal. This probability is given
by
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where p;; are the partial probabilities at the measurement points, and ¢*
is the noise dispersion which is supposed to be equal for all the points.
The probabilities depend only on deviations, not on the signal values,
because the correlograms are additive. Particularly, noise is added
linearly. This fact substantiates the expression (2) and all the following
derivations. The requirement of maximization of (2) results in the re-
quirement of least-squares:
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(here and below, if not specified otherwise the sums are over the set of

measurement points). (3) is equivalent to the requirement of maximum

covariance:
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Thus, the most probable shift of the correlogram and hence the most
probable surface position is at a 25, where the covariance of the mea-
sured and reference correlograms is maximal. In other words, to be in
accordance with the MLM and to get the surface position one has to
calculate the cross-correlation function and to find the position of its
maximum. This is the correlogram correlation (CorCor) method. Let us
emphasize: according to the above derivation no other procedure can
give a more accurate estimation of surface height in the sense of its
probability. Hence, the robustness to noise of this estimation procedure
cannot be surpassed [10]. Note that this statement is correct for large
noise amplitudes as well as for low.

The fact that the correlogram values are only known on the grid of
measurement points z;, which in WLI is typically rare, does not mean
that the maximum in (4) can be found only at one of these points. It
means instead that frequencies above the Nyquist limit are absent in
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correlograms. This limitation does not prevent us from precisely finding
the cross-correlation maximum. In this study we have calculated the
cross-correlation function (4) on the discrete grid and then interpolated
it using an interpolation method which preserves the spectrum of the
interpolated function. The details and substantiations necessary to im-
plement the correlogram correlation method are given in [11].

2.2. Height evaluation methods and their variances

The variance of the CorCor method is obtained as follows: Suppose a
sample J; is the result of noise added to a pattern I;, the pattern being
shifted to a position zo. The probability p of the occurrence of this
sample depends on the value of z,. Then, the Cramer-Rao bound [10]
gives an estimator of the z, variance (E is the operation of taking the
statistical expectation value):

var(zo) < —1/E(6%n p/dzd). 5)
Using (1) and the probabilities given by (2), we obtain:
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In the CSI, a reliable part of the envelope called “half-height en-
velope” is commonly found above the half-level of its maximum de-
viation. There are two established methods to estimate the envelope
position, the parabola fitting and the centroid method. In the former a
parabola is least-square fitted to the half-height envelope and its max-
imum position is taken as 2y, in the latter z, is equal to the half-height
envelope’s center of gravity. A lower bound for the height estimation of
the parabola fitting can be found similarly to (6). For the centroid
method it can be obtained directly. The two expressions are [11]:
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where E) and E are the envelopes of reference (I) and measured (J)
correlograms. The sum is over the half-height envelope. Here and below
we take the discretization step Az as a unit of z, so z; = j.

The PSI basically translates the phase ¢ of a harmonic with wave-
length A to height according the obvious relation z = (1/2m)A¢p. For the
k™ digital harmonic it is z = (1/2n)(N/k)@x. The application of the
MLM to a set of harmonics k; < k < k, [12] gives the height estimation
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where X are the complex amplitudes of harmonics. Their norms are
used as weights while fitting the phases with a straight line. Different
choices of k; and k; are possible and suite different situations. Below, in
our simulations, we consider the following variants: k; = 1, ko = N/2
(complete spectrum); k; = ky = ko, where kg is the index of the har-
monic with the maximum amplitude (main harmonic); and k;,, de-
termined as indices of the first and last harmonics with amplitudes not
less than 5% of the maximum amplitude (main spectrum). Besides, we
consider a fitting without weighting over the main spectrum setting
|Xx| = 1 in (8) and the fitting of phase gradients instead of the phases
themselves [6], where again no weights are used and only the main
spectrum employed.The variance bound corresponding to (8) is found
in [12,13], and can be written as

20 =
(8
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